AkaiKKRでPd-Rh二相共存領域

二元系の状態図には、全率固溶型や共融型などいくつかのパターンが存在します。Pd-Rhの二元系では、端成分が共に面心立方構造となっています。そのため高温では固溶体となります。しかしながら、低温では二相に分離します。今回はAkaiKKR(machikaneyama)を利用して、この境界となる温度を求めてみます。

Pd-Rh-520.png

Fig.1: Pd-Rh二元系の合金状態図とAkaiKKR(machikaneyama)によって計算された固溶と二相共存の境界温度(紫:マフィンティン近似, 緑:原子球近似)



熱力学


全エネルギーの組成依存性が上に凸の形になる場合、定性的に二相分離が予想されます。境界温度を推定するためには、二相分離した状態と固溶した状態のギブスエネルギーの差がゼロになる条件を探せばよいことが分かります。

\begin{equation}
G = E + PV - TS
\end{equation}

まず、常圧のみを考えると P≒0 としても影響はほとんどありません。エネルギー E の項には、第一原理計算から得られる全エネルギーの他に格子振動の寄与などが考えられますが、二相分離状態と固溶状態の差は小さいと仮定して無視します。

エントロピーSについても配置のエントロピーのほかに格子振動の寄与などが考えられますが、配置のエントロピーのみを考えることにします。するとRh濃度が x のときの全エネルギーの差と、固溶体の配置のエントロピーは、以下の様になります。

\begin{equation}
\Delta E(x) = E_{\mathrm{Pd_{1-x}Rh_{x}}} - \{ (1-x)E_{\mathrm{Pd}} + x E_{\mathrm{Rh}} \} \\
S_m(x) = - k_B \{ (1-x)\ln (1-x) + x \ln (x) \}
\end{equation}

したがって求める温度は以下のようになります。

\begin{equation}
T(x) = \frac{\Delta E(x)}{S_m(x)}
\end{equation}

計算手法


AkaiKKR(machikaneyama)を用いてPd-Rh合金系の全エネルギーを計算しました。交換相関汎関数にはpbeを用いました。シェルスクリプトPdRh_sh.txtを用いて、組成と格子定数を変化させながら、各組成における最安定な格子定数とそのときの全エネルギーを決定しました。ポテンシャルの形状は、マフィンティン近似と原子球近似(ASA)の両方を試しました。

全エネルギーを計算する際に、状態密度の計算も行いました。端成分の状態密度に関してはecaljでも計算し、クロスチェックしました。

結果と議論


Fig.2-3に純粋なPdとRhの状態密度を示します。AkaiKKRで計算した結果とecaljで計算した結果が良く一致していることが分かります。

Pd-DOS.png
Fig.2: Pdの状態密度

Rh-DOS.png
Fig.3: Rhの状態密度


Fig.4にPdの体積と全エネルギーの関係をプロットしたものを示します。ゼロ気圧における体積V0とそのときの全エネルギーE0を得るためにBirch-Murnaghanの状態方程式にフィッティングしました。

\begin{equation}
E(V) = E_0 + \frac{9V_0B_0}{16}\left\lbrace \left[ \left( \frac{V_0}{V} \right)^{\frac{2}{3}} -1 \right]^3 B_0^\prime \\
+ \left[ \left( \frac{V_0}{V} \right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 -4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\rbrace
\end{equation}

PdRh_0.png
Fig.4: Pdの体積と全エネルギーの関係


フィッティングする体積の範囲はV0付近でフィッティング結果が良くなるように適切に選びます。

得られた全エネルギーから固溶と二相分離の境界の温度をプロットしたのがFig.1です。計算結果は、二元合金状態図集の状態図と比較してあります。Pd-Rh合金の計算ではASAの結果が実験結果を驚くほどよく再現しています。しかしながら、今回のような良い結果が得られるのは、どうやら周期表で同じ周期に隣接している元素同士の合金だけのようです。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR CPA 二相共存 状態密度 DOS 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ