LTspiceで演算増幅回路

以下(fig.1)に示すような回路があるとします。


001_20120204024428.png
Fig.1: V1の電圧が0Vのとき、outの電圧は何ボルトでしょう?


R1は1Ωで1Aの電流が流れています。
V1における電圧は0Vでした。outにおける電圧は何ボルトでしょうか?

答えは1Vで、単純にオームの法則から求めることができます。

V = R * I = 1Ω * 1A = 1V

です。


反転増幅回路


これと同じ状況は、OPアンプ回路でよく見ます。
OPアンプは、負帰還をかけて、反転入力端子と非反転入力端子が同電位となる様にして使われるからです。(ヴァーチャルショートあるいは仮想短絡などと呼ばれます。)
Fig.2-3は、こういった場合の少し現実的な回路です。


002_20120204024428.png

003_20120204024428.png
fig.2-3: V1の電位はGNDと同電位だとわかる


抵抗値や電流・電圧を計算しやすい値にしていましたが、肝心なのは比率だけなので、実際の回路設計で使いやすい値に変更しても同じことです。(Fig.4-5)


004_20120204024427.png

005_20120204024427.pngfig.4-5: より現実的な回路定数として、R1を10kΩにI1を100uAに変更


これを90度回転させると、よく見慣れた反転増幅回路となります。(fig.6-7)


006_20120204024427.png

007_20120204024508.pngfig.6-7: 一般的な反転増幅回路


もう少し複雑な回路:加算回路, 対数増幅回路


こういった考え方は、『一見すると複雑な回路』の動作を考えるときに役に立つかもしれません。

たとえば、先ほどの反転増幅回路において電流源の数を増やせば加算回路になります。


008_20120204024507.png

009_20120204024815.pngfig.8-9:加算回路


また、R1の代わりに抵抗以外の素子を入れると、その素子の特性を反映した増幅回路になります。
一例として、ダイオードを入れた回路を紹介します。


010_20120204024507.png

011_20120204024506.pngfig.10-11:素朴なログアンプ


ダイオードの電流-電圧特性は、指数(対数)関数的です。
したがって、増幅回路も線形ではなく指数(対数)的なものになります。

『一見すると複雑な回路』もヴァーチャルショートを仮定すると、挙動が追いかけやすくなります。
ただし、OPアンプ素子そのものは、負帰還をかけた増幅回路としても、負帰還をかけないコンパレータとしても使われることがあるので、注意が必要です。(その両方のようなトリッキーな回路にも需要があるようです:しきい値付近で線形増幅器になるコンパレータ)

補足:ログアンプの温度特性


fig.10に示した素朴なログアンプは、通常、実用的ではありません。その原因は、帰還素子として利用するダイオードの温度特性が極端であるからです。

前述の素朴なログアンプを、LTspiceで温度解析したものがfig.12-13です。20℃から50℃まで温度変化が出力に与える影響は、入力電圧に換算すると最大で一桁程度の変化に相当します。


012_20120204024506.png

013_20120204024524.pngfig.12-13:素朴なログアンプの温度解析(20-50℃)


よほど限られた用途以外では、これだけ大きな変動は許容されないはずです。そのため、ログアンプは温度補償を必要とします。温度補償の詳しい解説は、岡村 廸夫著 定本 OPアンプ回路の設計等に書いてあります。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice OPアンプ  

OPアンプのバイアス電流と高抵抗

一般的に、OPアンプ回路に使う抵抗は1k-100kΩ程度が良いとされています。しかしながら、ほとんどの使い方では、メガオーム以上の抵抗を使うことがないので、高抵抗を使うとどうなるのかを実感することは、多くありません。
今回は、低周波数のフィルタ回路を作る際に、OPアンプの入力バイアス電流の大きさと抵抗値の関係性が問題になった例を紹介します。

001_20120128192250.png 002_20120128192249.png 003_20120128192249.png 004_20120128192248.png


カットオフ周波数100mHzのハイパスフィルタ


趣味の電子工作で作るフィルタの帯域は、可聴域であることがほとんどで、広帯域のフィルタと言われると、高い周波数まで性能がよいフィルタということになります。

しかし、今回は、それとは逆の話で、低周波数の交流フィルタ回路の話を紹介します。
地惑実験(電子回路)のときの話です。
(厳密に言うと、回路設計や対処をしたのは私が休んだ日の話なので、私がやったのは、後日行った原因解明です。)

地震の研究は、地球惑星科学の中でも王道のひとつです。地震による建物の固有周波数は、およそ数Hz程度です。
地球惑星科学科の電子回路実習では、実験室がある建物の固有周波数が計測できれば面白いということで、秋月電子通商の3軸加速度センサをデータロガーに接続して、計測を行いました。

秋月の加速度センサは、単電源動作をさせるため、出力電圧にVcc/2のバイアスがかかっています。しかしながら、これでは、信号を増幅する際うっとおしいので、交流結合して直流分をカットしてしまおうと思いました。ただし、計測したい信号周波数が低いため、ハイパスフィルタのカットオフ周波数を低くしなければなりません、そんなわけで設計した100mHzのハイパスフィルタがfig.1-2です。


001_20120128192250.png
002_20120128192249.png

fig.1-2: カットオフ周波数100mHzのハイパスフィルタ


しかしながら、この回路を実際に組んでみると、期待通り動作する学生と、無信号時でも出力に数百mV程度のオフセット電圧が乗ってしまう学生とが出てきました。
それぞれの回路を比べると、どうやらOPアンプにuA741を選択した学生の回路ではオフセット電圧が発生し、TL071を選択した学生にはオフセットが現れないということでした。

原因はOPアンプのバイアス電流


uA741は、バイポーラトランジスタ入力のOPアンプです。これに対して、TL071はJFET入力のOPアンプです。
これらの構成上の違いは、OPアンプの入力インピーダンスに現れます。

uA741の入力バイアス電流の標準値は80nAで、TL071の65pAと比較すると3桁以上悪い値です。
バイアス電流の影響をモデル化するためにfig.1の回路の非反転入力端子に電流源I1を接続し、出力にあらわれるオフセット電圧のシミュレーションを行いました。


003_20120128192249.png
004_20120128192248.png

fig.3-4: 入力バイアス電流が出力のオフセットに与える影響


シミュレーション結果fig.4から明らかなように、バイアス電流10nAあたり100mVのオフセット電圧が発生しています。これは、数十nAのバイアス電流を持つuA741を使った学生の回路で数百mVのオフセットが見られたことを定量的に説明できます。

電流源I1の電流はR2に流れることにより電位差を発生させます。この電圧が出力のオフセット電圧の原因です。したがって、(C2を大きくできる、カットオフ周波数がより高いなどの理由で)R2の値が小さければ出力のオフセットはより小さくなることになります。

高抵抗・高容量を必要とする回路


一般論として、OPアンプの帰還抵抗や入力抵抗に利用する抵抗の値は1k-100kΩ程度が良いと言われています。
可聴域のフィルタを作っている限りは、メガオームを超える抵抗を扱うことはほとんどないので、抵抗値が高すぎることに頭を悩ますことは稀でした。

フィルタ回路だけでなく、発振回路の場合も、低周波数を実現するためには高抵抗・高容量の素子が必要になります。
高容量かつ高精度のコンデンサは高価なので、結果的に高抵抗を使うことを選ばざるを得ないことはあると思います。
今回の問題の本質は、uA741がTL071よりも劣っていたというよりは、高抵抗を使うような設計に対して無神経であったところにあると思います。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice OPアンプ 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ