PSoCマイコン・スタートアップ[PSoC基板&書き込み器]

CQ出版からPSoCに関する新しい本が出版されるようです。

PSoCマイコン・スタートアップ[PSoC基板&書き込み器]

36351.jpg


どうやら、MiniProg1と評価基板付で3990円と、MiniProgを単体で買うよりも安いと言うお買い得本になるようです。

ただし、目次を見る限り入門者だけをターゲットとした本ではなく、真打はCapSenseのようです。
そんなわけで、既にPSoCユーザである人にとっても十分価値のある本に見えます。



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: PSoC 

ニコニコ技術文化祭@東工大のお知らせ

東工大で行われる、ニコニコ技術部文化祭はとうとう今週末になりました。
私も見に行こうと思っています。皆様どうでしょうか?

PSoCでLED正弦波電流駆動

PSoCは、ワンチップで簡単に正弦波電圧を出力できます。この正弦波電圧出力でLEDを駆動したのがPSoCでLED正弦波駆動です。今回は、PSoCをもちいてLEDを正弦波電流駆動しました。



video.1: LEDの正弦波電流駆動



PSoCで正弦波電圧出力


PSoCでLED正弦波駆動では、PSoCのI/Oから1Hzの正弦波電圧を出力することにより、LEDを駆動するサンプルプロジェクトを動作させました。その結果、LEDがぼんやりついたり消えたりを繰り返す動作をすることを確認できました。

このときの出力電圧と、LEDに流れる電流の関係は、fig.1に示すものでした。


005_20090604133317.png
fig.1: 電圧波形(赤),電流波形(緑)


緑の電流波形(実際はLEDと直列の抵抗の両端の電位差)をみると、正弦波というよりは、ON/OFF動作のON時の波形がなまったような形をしています。
LEDは電流駆動すべき素子です。そこで、本エントリでは、PSoCをもちいて、正弦波電流出力をすることを目的とします。

電流出力回路


正弦波の電流出力が必要になるアプリケーションは数多く存在します。
抵抗の測定には、直流電流源が必要となりました。(100mA定電流源,TL431で低抵抗測定用10mA定電流源)

同様に交流インピーダンスを測定する場合には、交流電流源が必要となります。

たとえば、インダクタンスの測定などです。正弦波電圧を正弦波電流に変換する電圧-電流コンバータ回路に関しては、LTspiceでモンテカルロ解析LTspiceモンテカルロ解析の定数分布 その4でモンテカルロ解析を行いました。これらのエントリから、電流出力回路の発振のしやすさが伺えます。

PSoCオペアンプ


PSoCの連続時間ブロック(CT Block/Continuous Time Block)の中心はOPアンプでできています。しかしながら、このOPアンプの入出力をすべて同時に外部に出力することはできません。

これに対して、JUNK-BOXさんが反転入力側にPGAで作ったボルテージフォロワを追加することによって、擬似的に外部にOPアンプの入出力を取り出す方法を公開しています。(PSoCオペアンプ)

電流値のフィードバック回路


LEDの電流駆動回路の場合は、片方向の電流源でよいのでfig.2-3に示すように電流検出用のシャント抵抗の両端電圧と正弦波電圧をエラーアンプで比較するだけの単純な回路で実現できるはずです。


002_20091019030143.png
fig.2: 電流値のフィードバック回路

003_20091019030138.png
fig.3: LEDの電流波形


OPアンプとしてLMC662を用いてfig.2の回路を作成したところ、シミュレーションどおり正弦波電流出力ができました。しかしながら、前述の方法で外部に取り出したPSoCのOPアンプで同様の回路を構成したところ、1Hzの正常な発振に加えて激しい寄生発振が見られました。

PSoCでLED正弦波電流駆動


寄生発振が無く、LEDを正弦波電流駆動するために行ったことは以下の3点です。

  • OPアンプのPowerを下げる(LOWPOWERにする)
  • PGA_2の接続先を反転入力から非反転入力に変更する
  • LEDと直列に抵抗を挿入



004_20091019030138.png
fig.4: PSoC Designer


fig.4に示すとおり、PGA_2,PGA_3を追加します。PGA_2はゲインを0.25に、入力を正弦波出力に接続します。PGA_3は、入力をPGA_2にし、出力を外部に出します。この時点では接続されていませんが、PGA_3のある列のアナログ入力マルチプレクサの接続先が、OPアンプの反転入力端子になります。

以下に、main.cの一部を示します。

void main()
{
        Counter16_1_Start();
        Counter8_1_Start();
        PGA_1_Start(PGA_1_HIGHPOWER);
        BPF2_1_Start(BPF2_1_HIGHPOWER);

        PGA_2_Start(PGA_2_LOWPOWER);
        PGA_3_Start(PGA_3_LOWPOWER);
        ACB02CR1 = (ACB02CR1 & 0xc7) | 0x38;
}


PGA_2およびPGA_3のPOWERをLOWPOWERに設定します。
ACB02CR1レジスタに書き込みを行うことで、ACB02(PGA_3)の反転入力をPort0[7]に接続します。

出力P0[4]からフィードバック入力であるP0[7]の間に負荷となるLEDを接続しますが、このときLEDと直列に抵抗を挿入します。
以上をまとめた接続の概念図をfig.5に示します。


005_20091019030129.png
fig.5: 接続の概念図


電流波形の測定結果


fig.6にPDS5022で測定した波形を示します。


006_20091019030129.png
fig.6: 電流波形(赤) 基準電圧(緑)


基準電圧のステップ上の信号にも(それがよいことか悪いことかは別として)きちんと追従しつつ、寄生発振も起こしていません。

インダクタンス計への応用


OPアンプのPOWERを下げると、OPアンプの利得帯域幅積が下がるので、ゲイン余裕が作れるはずです。PGA_2がエラーアンプの反転入力側に入っていると帰還部分での信号の遅延が大きくなり、位相余裕の減少につながると考えられます。

今回のような負荷がはっきりしている回路では、カットアンドトライで対策を考えることもできますが、どのような負荷がつながるか分からない計測器の場合はそれも難しいと思います。

PSoCを用いた位相検波方式のインダクタンス計としては、PSoCデジタルLメータのありえない実装があります。しかしながら、この作例でも電圧-電流変換回路部だけは外部のOPアンプを利用しています。

逆に言えば、電圧-電流変換回路さえPSoCで作れれば、ワンチップインダクタンス計が実現するわけですが、なかなか難しそうです。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice PSoC 定電流 OPアンプ 

ADCの並列動作 その3

LTspiceでスイッチト・キャパシタの交流解析にて、スイッチング動作を含む回路の周波数-ゲイン特性をLTspiceで確認する方法を試しました。
今回は、この方法を拡張して、ADCの並列動作 その2でシミュレーションしたモデルに対して、位相特性まで含んだボーデ線図を描きました。

その結果、A/Dコンバータを並列動作させた場合、時間分解能は向上するが、帯域は変化しないこと、連続時間的な交流解析ではスイッチング回路の交流特性の評価ができないことがわかりました。

001_20091011181607.png 003_20091011181606.png


スイッチング回路の交流解析


LTspiceでスイッチト・キャパシタの交流解析では、PSoCのスイッチト・キャパシタで作ったBPF2の周波数特性をLTspiceで調べる方法を書きました。その結果、既知のゲイン線図と比較して、十分な精度のシミュレーションができていることが確認できました。

今回は、トランジスタ技術2009年1月号の記事「汎用マイコンで500kHzサンプリングとストレージ動作を実現 8パラAVRでA-D変換するUSBオシロスコープ」を元ネタとしたA/Dコンバータの並列動作に関するエントリ(ADCの並列動作 その1,ADCの並列動作 その2)の続編として、並列動作しているA/Dコンバータに対してスイッチング回路の交流解析を行い、位相線図までを含んだボーデ線図を描くことを目標とします。

位相の求め方


LTspiceでスイッチト・キャパシタの交流解析でゲイン線図を描くことには成功しました。一方で、位相は入力信号のある点と出力信号の対応する点の時間差から求められます。今回は、振幅の中心を立下りで通過する時刻を比較することによって位相を求めることにしました。

シミュレーション結果


fig.1-3にシミュレーション結果を示します。


001_20091011181607.png
fig.1: スケマティック

002_20091011181639.png
fig.2: 過渡解析結果

003_20091011181606.png
fig.3: ボーデ線図,ゲイン(赤),位相(緑)


fig.3がボーデ線図です。赤のラインがゲインで、単位はdBです。緑のラインが、位相を表し、単位は度です。

ゲインと位相


一般的にゲイン線図で、-3dBとなる周波数を帯域と呼びます。このオシロスコープの帯域は約15kHzと言うことになりました。
また、位相の回転は非常に激しく、100kHzまでに1.5周してしまっています。60kHz前後で再びゲインが大きくなるのは位相が1周してしまっているからですね。

単一のA/Dコンバータとの比較


並列動作させない単一のA/Dコンバータのスイッチング動作交流解析の結果をfig.4-6に示します。


004_20091011181639.png
fig.4: スケマティック

005_20091011181639.png
fig.5: 過渡解析結果

006_20091011181639.png
fig.6: ボーデ線図,ゲイン(赤),位相(緑)


fig.6のボーデ線図は、並列動作時のfig.3と比較すると(全体的に表示が荒いものの)同じ傾向を持っているように見えます。このことから、A/Dコンバータの並列化によって、ゲイン特性と位相特性はともに、向上も悪化もしていないことが分かります。

連続時間交流解析との比較


fig.7-8に、単一のA/Dコンバータに関して、アナログスイッチをすべて閉じた状態での交流解析の結果を示します。(ADCの並列動作 その1の結果をdB表記に直しただけです。)


007_20091011181638.png
fig.7: スケマティック

008_20091011181638.png
fig.8: ボーデ線図,ゲイン(実線),位相(破線)


スイッチングを含む解析に比べるとはるかによい特性を示しています。言い換えれば、スイッチングを含まないボーデ線図からはスイッチング回路の特性を評価できないと言うことです。

モデルの妥当性


ADCの並列動作 その2でも書いたことですが、並列スイッチング動作のSPICEモデルはワーストケースを意図して作成したものなので、実際に製作した回路の特性とはかなりかけ離れている可能性があります。

並列動作のゲインは、実効値を求めているため、使われるデータ点数が比較的多いので、高周波側まできれいな曲線がかけていますが、位相線図は、立ち上がりの1点のデータだけで描くことになるので、高周波側では時間分解能の影響を受けて誤差が大きくなっていると考えられます。

結論


以上を踏まえて以下の議論が成り立ちそうです。

  • A/Dコンバータの並列動作により、単一動作時よりも時間分解能が向上する
  • A/Dコンバータの並列動作により、帯域は単一動作時と変化しない
  • スイッチング回路の帯域は、連続時間的な交流解析だけでは評価できない


関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice A/Dコンバータ スイッチング回路 

LTspiceでスイッチト・キャパシタの交流解析

LTspiceのAC解析は、スイッチングを含む回路の周波数特性をシミュレーションすることができません。そこで、スイッチング回路の評価に適した過渡解析を反復させることにより、PSoCのスイッチト・キャパシタフィルタのゲイン線図を描いてみました。

その結果、フィルタ設計ウイザードのゲイン線図とよく一致することが確認できました。このことからも、LTspiceでスイッチト・キャパシタのLTspiceモデルが現実の回路をよく再現していることを確認できました。

005_20091010201221.png 007_20091010201221.png 009_20091010201220.png


連続時間回路に対するAC解析の限界


LTspiceには、回路の交流特性のシミュレーションを行うための小信号交流解析(.acコマンド)があります。このコマンドを使えば、増幅回路やフィルタの周波数に対するゲインや位相の特性を調べることができます。(例:超音波距離計 第三回:受信回路の交流解析,LTspiceでオールパス・フィルタ)

しかしながら、このAC解析は連続時間的な回路の周波数特性を調べるためのものであるため、スイッチングを含む回路の周波数特性を調べることができません。
スイッチングを含む回路にも、周波数特性が重要になってくるものがたくさんあります。例えば、A/Dコンバータのサンプル&ホールド回路やスイッチト・キャパシタ・フィルタなどです。ADCの並列動作 その1では、スイッチングの効果を考慮せずにサンプリングスイッチのON抵抗とホールドコンデンサによって構成されるRCローパスフィルタの周波数特性のみをシミュレーションしました。

今回は、ゲインの周波数特性がフィルタ設計ウイザードに書かれているPSoCのBPF2に関して、シミュレーションと理論値との比較を行います。

過渡解析


フィルタ自体は、LTspiceでスイッチト・キャパシタで作ったモデルに対して、中心周波数が1kHzとなるように、サンプリング周波数を50kHzとしたものにしました。

解析の基本となる過渡解析のシミュレーション結果をfig.1-2に示します。


001_20091010201651.png
fig.1: スイッチト・キャパシタ・バンドパスフィルタのスケマティック

002_20091010201651.png
fig.2: 入力電圧(赤) 出力電圧(緑)


fig.2のグラフは、出力電圧が定常状態に入ったあとのものです。
入力電圧の周波数を100Hz,10kHzと変更してシミュレーションしたところ、最初の数msは出力が安定しないようです。


003_20091010201650.png
fig.3: 入力周波数100Hzの出力波形

004_20091010201650.png
fig.4: 入力周波数10kHzの出力波形


このため、交流特性は10ms以降の1周期分のデータに対して処理を適用することにより議論します。

スイッチング回路のAC解析


周波数-ゲイン特性図(ゲイン線図)を書くために、.measと.stepを組み合わせた過渡解析を行います。
ゲインは(出力電圧)/(入力電圧)なので、それぞれの1周期分の実効値を.measで計算します。


005_20091010201221.png
fig.5: スケマティック

006_20091010201650.png
fig.6: 横軸が時間,縦軸が入力電圧波形(赤)と出力電圧波形(緑)

007_20091010201221.png
fig.7: 横軸が周波数,縦軸がゲインで、単位はdB


fig.7がもとめるゲイン線図です。

フィルタ設計ウイザードとの比較


フィルタ設計ウイザードによって得られたゲイン線図をfig.8に示します。
青の破線で書かれたのが理想特性(Nominal)で、緑の実線で書かれたのが実際の回路で予測される特性(Expected)です。


008_20091010201650.png
fig.8: フィルタ設計ウイザードのゲイン線図


これに対して、LTspiceのシミュレーションから得られたfig.7のゲイン線図を画像として重ねたものをfig.9に示します。


009_20091010201220.png
fig.9: フィルタ設計ウイザードとLTspiceのゲイン線図の比較


赤のラインで示したLTspiceのシミュレーション結果は、フィルタ設計ウイザードのゲイン線図と非常によく一致しました。

ただし、よりよく一致したのは残念ながら、緑のExpectedではなく、青のNominalでした。
スイッチト・キャパシタのモデル化の際に、OPアンプやスイッチ、コンデンサ等すべてを理想的な部品としたため、ある意味当然と言えば当然の結果です。
この差を埋めるための要素としては、OPアンプの周波数特性、スイッチのON抵抗、コンデンサの漏れ電流など候補はいくつか考えられそうです。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice PSoC スイッチト・キャパシタ スイッチング回路 

LTspiceで.meas(実効値,積分値など)

LTspiceには、過渡解析などの基本的な解析コマンドと組み合わせて実効値や積分値を表示することができる.measコマンドがあります。
これらの解析に、.stepコマンドを用いたパラメータスイープを行えば横軸にスイープしたパラメータ、縦軸に.measコマンドで指定した値をとるグラフを描くことができます。


.measコマンド


LTspiceには、シミュレーション結果から、その実効値や積分値をよみだすための「.meas」コマンドが存在します。.measコマンドは、非常に広い適用範囲を持っているます。LTspiceに付属するHelpの.measureの項やエレキジャックブログの連載(5)LTSPICEで回路の検討 ウィーンブリッジ発振回路(4)が参考になります。

.measと.stepの組み合わせ


しかし、.measコマンドの真骨頂は、.stepコマンドを利用したパラメトリック解析との組み合わせにあります。.measを含むシミュレーションを.stepを用いてパラメータスイープすると、横軸にスイープしたパラメータ、縦軸に.measで指定した値をとるグラフを描くことができます。

具体的な使い方に関しては、回路シミュレーション part 3 の>>841-843さんの書き込みを以下に転載します。

841 名前:774ワット発電中さん[] 投稿日:2009/04/13(月) 15:06:02 ID:0DBBiPfl
LTspice の Changelog.txt (4.02c, 2009/4/8) にこんなことが書いてあった。

 04/04/09 The data from a .step'ed .meas statements can now be reformated to
 a .raw file and ploted (View=>SPICE Erorr Log then right button menu).

どういうことなのか試した。Error log file の画面を右クリックすると
 Plot .step'ed .meas data
が選べるのだ。

こんなグラフ (画像の右半分) ができたよ。例が悪いとは思うが。

5451.png

http://www.savefile.com/files/2075535
(DOWNLOAD FILE → DOWNLOAD WITH LIMITED SPEED → しばし待つ・・)

確かに昔 .meas した結果がプロットできたらー、とか思ったことはある。
それが出来るとなれば、うまい使い方ができる可能性はあるね。

別件だが、こんな画像や圧縮ファイルをダウンロードできる気軽なサイトは
ないのだろうか・・

842 名前:774ワット発電中さん[sage] 投稿日:2009/04/13(月) 15:45:09 ID:0DBBiPfl
× ダウンロードできる気軽なサイト
○ 共有できる気軽な Web サイト ・・ でしょうか。しつれいしました。

843 名前:841[sage] 投稿日:2009/04/14(火) 22:52:07 ID:NkX2U27x
>>841
それに関して、もう一つ気づいた。
一度、.step'ed .meas 結果のプロットができたとして、そのウィンドウを選択して
保存 (save) すると *.log.plt とかいうファイルが作られる。これは普通の
*.plt と同じように働いてくれる。


湿度センサHS15Pのシミュレーション


本ブログでも、この.stepと.measを組み合わせたシミュレーションを行っています。
LTspiceでHS15P湿度計です。


004_20090627001138.png

006_20090627001138.png


このときは、過渡解析を複数回行い、横軸に湿度を、縦軸に出力電圧の平均値をプロットしました。

この解析方法を使いたくなるときは、解析対象がある程度以上複雑な回路であることが多いです。その反面、.stepコマンドで複数回の反復解析を行うため、トータルの計算時間が大きくなりがちなので注意が必要です。

関連エントリ




参考URL




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice 

LTspiceでスイッチト・キャパシタ

PSoCは、そのプログラマブルなアナログ回路機能の大部分をスイッチト・キャパシタの技術により実現しています。スイッチト・キャパシタ回路は、単純な連続時間のアナログ回路と異なり、スイッチングにともなう周波数成分を含みます。
このスイッチングノイズをLTspiceによりシミュレーション的に評価するために、スイッチトキャパシタ・フィルタのモデル化を行いました。

このモデルに基づくLTspiceの解析は、実測データをよく再現し、また、解析自体も高速に完了することを確認しました。PSoCのスイッチト・キャパシタを含む回路システム全体のシミュレーションも十分現実的だと思われます。

006_20091005030746.png 007_20091005030734.png 009_20091005030706.png


PSoCのスイッチト・キャパシタフィルタ


PSoCのアナログブロックは、連続時間ブロック(CT)とスイッチト・キャパシタブロック(SC)で構成されています。スイッチト・キャパシタは、コンデンサをアナログスイッチでスイッチングすることにより、通常の連続時間的な回路では難しい処理を行うことができます。フィルタはその一例で、スイッチング周波数を変更することにより、キャパシタンスや抵抗値などの回路定数を変更することなくカットオフ周波数を変更することができます。


001_20091005030646.png
fig.1: BPF2のブロック図


PSoCでLED正弦波駆動では、矩形波をスイッチト・キャパシタで構成したバンドパスフィルタに通すことにより正弦波を得るアプリケーションを紹介しました。
その実測波形を見ると、正弦波が階段状のノイズを含んでいることが確認できました。


005_20090604133317.png
fig.2: 出力電圧波形(赤)は階段状のノイズを含んでいる


BPF2やLPF2といったアクティブフィルタのユーザーモジュールは、そのフィルタ特性の設計のために、フィルタ設計ウイザードが用意されています。
これを用いれば、簡単に目標の特性を満たすフィルタを設計できます。


002_20091005030629.png
fig.3: BPF2のフィルタ設計ウイザード


しかしながら、前述の階段状のノイズがどのように出力波形に現れるかを、フィルタ設計ウイザードから読み取ることは困難です。
そこで今回は、LTspiceを用いて、PSoCのスイッチト・キャパシタフィルタのシミュレーションを行い、実際の出力波形を設計段階から評価できるようにすることを目標とします。

スイッチト・キャパシタのSPICEモデル


今回は、BPF2ユーザーモジュールを、fig.2のとおり、PSoCでLED正弦波駆動PSoCの正弦波出力をFFTで利用した構成とします。
スイッチト・キャパシタフィルタは、fig.1のブロック図のとおり、以下の要素で構成されています。

  • コンデンサ
  • アナログスイッチ
  • OPアンプ


コンデンサに関して


PSoCのスイッチト・キャパシタは、1ユニット80fF(typ)のコンデンサを複数ユニット組み合わせて任意のキャパシタンスを得る構成になっています。

fig.2から、table.1に示すように指定しました。

Parts No.UnitCapacitance
C1180fF
C24320fF
C34320fF
C48640fF
CA322560fF
CB322560fF
table.1: BPF2のキャパシタンス


アナログスイッチに関して


アナログスイッチ自体のパラメータであるオン抵抗/オフ抵抗は、詳細が分からなかったので、LTspice標準のものとしました。

スイッチトキャパシタに存在するアナログスイッチがONになるタイミングは、2種類存在します。Φ1のみがONとなるacquisitionフェーズと、Φ2のみがONとなるtransferフェーズです。トランジスタ技術 2009年 01月号のP146には以下のようにあります。

ASC/ASDで使われるクロックは、モジュール外部から与えられるクロックを1/4にして利用しています。詳細は書かれていないようですが、Φ1→(両方OFF)→Φ2→(両方OFF)→Φ1…というぐあいに、Φ1とΦ2のいずれかがONになる期間と両方がOFFの期間が交互になっているのでしょう。


と言うことなので、LTspiceのシミュレーションでもΦ1,Φ2それぞれがONとなるフェーズのほかに両方がOFFとなるフェーズを挟むこととします。

OPアンプに関して


OPアンプに関しては、さしあたりLTspice標準のUniversal Opampを利用しました。

以上でスイッチト・キャパシタフィルタのシミュレーションに必要なモデル化ができました。

過渡解析


fig.4にLTspiceシミュレーションのスケマティックを、fig.5に過渡解析の結果を示します。


004_20091005030627.png
fig.4: 過渡解析のスケマティック

005_20091005030625.png
fig.5: 過渡解析のグラフ


赤で示した波形が入力の矩形波で、緑で示した波形がBPF2の出力です。電源投入直後から正弦波が成長していく過程は、現実の回路の実測波形でも、(本ブログで紹介したことはありませんが、)こんな感じです。

フーリエ解析


続けて、PSoCの正弦波出力をFFTの実測波形と比較するために、フーリエ解析を行います。


006_20091005030746.png
fig.6: フーリエ解析用のスケマティック


フーリエ解析では、PDS5022での実測と同じ条件での解析を行うため、解析点を4096点としました。


007_20091005030734.png
fig.7: シミュレーション結果の時間領域表示

001_20090924234832.png
fig.8: 実測波形の時間領域表示


時間領域表示(通常のオシロスコープでの表示)では、階段状のノイズも非常によく似た形をしています。

以下に、シミュレーションと実測データのFFT表示を示します。


009_20091005030706.png
fig.9: シミュレーション結果の周波数領域表示

002_20090924234832.png
fig.10: 実測波形の周波数領域表示


全体的にシミュレーションの方がキレイなスペクトルとなっていますが、主要なピークの位置は共通しています。

結論


1Hz前後の低周波では、十分と思われる正確な結果が得られました。フィルタ設計ウイザードとあわせて利用すれば、設計段階から完成品の性能の予測精度が上がると思います。

ただし、より高周波のシミュレーションでも十分な精度が得られるかは、今後検証していく必要があるかもしれません。特に今回はLTspice標準のOPアンプモデルを利用したので、PSoC内部のOPアンプとの周波数特性の差が効いてくる可能性はあります。

スイッチング回路のシミュレーションなので、計算にはかなりの時間がかかるであろうと想像していましたが、現実には非常に高速に解析が完了しました。LTspiceは回路規模に制限が無いので、PSoCのスイッチト・キャパシタを含む回路システム全体をシミュレーションすることも十分現実的であると考えられます。

SIMetrix/SIMPLIS


アナログ信号の離散時間処理というか、スイッチング動作を含むアナログ回路は、ぜひシミュレーションしたい回路である反面、SPICEが苦手としている領域でもあります。
こういった回路の解析には、非SPICE系の特化したシミュレータを使うほうがよいのかもしれません。

そう考えて、実を言うと電子回路シミュレータSIMetrix/SIMPLISスペシャルパック―複雑なトランジスタ回路やスイッチング電源も高速解析 (ツール活用シリーズ)を購入していたのですが、思いのほかLTspiceの解析速度が速くて出番がありませんでした。

とは言うものの、この本の内容は凄く面白く、参考になりました。
私のブログでは、A/Dコンバータのサンプルホールド回路に関するシミュレーションを題材としたエントリをいくつか書きましたが、これらや今回のスイッチト・キャパシタのシミュレーションに興味がある方にはお奨めできます。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice PSoC PDS5022 FFT スイッチト・キャパシタ スイッチング回路 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ