AkaiKKRの角運動量(方位量子数)のメモ

AkaiKKR(machikaneyama)を用いた第一原理計算でいつもいくつにするのだったか忘れがちな方位量子数の設定値に関してメモをまとめました。

d状態まで計算するなら mxl = 2 (入力ファイル)と mxlmx = 3 (specx.f)が必要で、f状態まで計算するなら mxl = 3, mxlmx = 4 が必要になります。

またspecx.fのmsizmxは、以下の値が必要と考えるのが簡単です。

msizmx ≧ natmmx * mxlmx2


軌道角運動量(方位量子数)


AkaiKKR(machikaneyama)の入力ファイル、及びspecx.fには軌道角運動量量子数(方位量子数)の設定に関するパラメータがあります。

  • mxl (入力ファイル)
  • mxlmx (specx.f)
  • msizmx (specx.f)

この方位量子数は l = 0, 1, 2, 3, ... と整数値を取り、順にs軌道、p軌道、d軌道、f軌道 ... と対応します(参考:電子配置 - Wikipedia)。

mxlとmxlmxの設定


AkaiKKRの入力ファイルの中では、どの軌道まで計算するかを入力ファイルの mxl で指定する必要があります。
更に、これを受けてspecx.fではmakeの前にあらかじめどの軌道まで計算できるかを mxlmx で指定しておく必要があります。この対応関係を以下に示します。


spdf
mxl0123
mxlmx1234
table.1: 計算する電子の軌道と設定すべきmxl,mxlmxの関係

ここで注意しなければならないのは、mxlmxのほうが常にmxlよりも1以上大きくなければならないと言う点です。このことはAkaiKKRのマニュアルや計算機マテリアルデザイン入門 (大阪大学新世紀レクチャー)では分かりにくいのですが、実を言うとspecx.fのなかにコメントとして記入されています。

note: mxlmx is l_max + 1 where l_max is the maximum angular momentum used in the calculation.

msizmxの設定


更にspecx.fのなかのmsizmxも、どの軌道まで計算するかに依存します。

AkaiKKRのマニュアルや計算機マテリアルデザイン入門 (大阪大学新世紀レクチャー)には以下の式が書かれています。

\sum_{i = 1}^{\mathrm{natm}}(l_{max,i}+1)^2

これは各原子位置において、異なる軌道まで計算するときのことを考えてシグマを使った和の形にしていますが、全て同じ軌道まで計算するのなら以下の様に簡単になります。

msizmx ≧ natmmx * mxlmx2

例えばhow to run a system of over 30 atoms?の例の様に単位格子の中の原子の数が30個でd軌道(l=2)まで計算する場合は msizemx ≧ 30 * (2 + 1)2 = 270 が必要になります。msizmxにいくつが必要になるのかの早見表を以下に示します。一列目が原子数です。

spdf
114916
2281832
33122748
44163664
55204580
66245496
772863112
883272128
993681144
10104090160
11114499176
121248108192
131352117208
141456126224
151560135240
161664144256
171768153272
181872162288
191976171304
202080180320
212184189336
222288198352
232392207368
242496216384
2525100225400
2626104234416
2727108243432
2828112252448
2929116261464
3030120270480
3131124279496
3232128288512
table.2: msizmxに必要な値の原子数・角運動量依存性


参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama specx.f 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPAPIC強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースecalj定電流スイッチング回路PDS5022DOS半導体乱数シェルスクリプトレベルシフトHP6632Aブレッドボード分散関係温度解析トランジスタ技術R6452A可変抵抗I2Cセミナー確率論反強磁性非線形方程式ソルバ絶縁偏微分方程式バンド構造熱設計数値積分バンドギャップカオスA/DコンバータフォトカプラシュミットトリガGW近似LEDLM358ISO-I2C三端子レギュレータ数値微分サーボ直流動作点解析カレントミラーマフィンティン半径TL431PC817C発振回路74HC4053USBアナログスイッチbzqltyFFTチョッパアンプ2ちゃんねる補間量子力学開発環境電子負荷標準ロジックパラメトリック解析アセンブラ基本並進ベクトルブラべ格子単振り子BSchLDAイジング模型繰り返しMaximaキュリー温度位相図状態方程式失敗談スピン軌道相互作用六方最密充填構造相対論FET抵抗コバルト不規則合金TLP621ewidthGGAQSGWgfortranランダムウォークラプラス方程式スイッチト・キャパシタcygwin熱伝導SMPスレーターポーリング曲線三角波格子比熱LM555条件分岐TLP552MCUNE555UPSTLP521QNAPマントルテスタFXA-7020ZR過渡解析詰め回路ガイガー管ダイヤモンド自動計測Writer509データロガー固有値問題VESTAスーパーセルOpenMP差し込みグラフ平均場近似起電力awk仮想結晶近似VCAubuntufsolveブラウン運動熱力学第一原理計算井戸型ポテンシャルシュレディンガー方程式面心立方構造fccウィグナーザイツ胞interp12SC1815L10構造非線型方程式ソルバFSMキーボードTeX結晶磁気異方性初期値OPA2277化学反応等高線ジバニャン方程式ヒストグラム確率論三次元フィルタRealforcePGAフェルミ面正規分布固定スピンモーメント全エネルギースワップ領域リジッドバンド模型edeltquantumESPRESSOルチル構造岩塩構造二相共存ZnOウルツ鉱構造BaOフォノンデバイ模型multiplotgnuplotc/aノコギリ波合金クーロン散乱ハーフメタル半金属CapSenseマンデルブロ集合マテリアルデザインSICGimpCK1026MAS830L円周率トランスPIC16F785凡例線種シンボルLMC662ヒストグラム不規則局所モーメント文字列疎行列TS-110TS-112Excel直流解析等価回路モデル入出力トラックボールPC軸ラベルAACircuitP-10フラクタル境界条件連立一次方程式Ubuntuifortパラメータ・モデルspecx.f関数フィッティング最小二乗法Crank-Nicolson法陰解法日本語EAGLEMBEグラフの分割負帰還安定性ナイキスト線図熱拡散方程式HiLAPW両対数グラフ片対数グラフ縮退

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ