AkaiKKRの角運動量(方位量子数)のメモ

AkaiKKR(machikaneyama)を用いた第一原理計算でいつもいくつにするのだったか忘れがちな方位量子数の設定値に関してメモをまとめました。

d状態まで計算するなら mxl = 2 (入力ファイル)と mxlmx = 3 (specx.f)が必要で、f状態まで計算するなら mxl = 3, mxlmx = 4 が必要になります。

またspecx.fのmsizmxは、以下の値が必要と考えるのが簡単です。

msizmx ≧ natmmx * mxlmx2


軌道角運動量(方位量子数)


AkaiKKR(machikaneyama)の入力ファイル、及びspecx.fには軌道角運動量量子数(方位量子数)の設定に関するパラメータがあります。

  • mxl (入力ファイル)
  • mxlmx (specx.f)
  • msizmx (specx.f)

この方位量子数は l = 0, 1, 2, 3, ... と整数値を取り、順にs軌道、p軌道、d軌道、f軌道 ... と対応します(参考:電子配置 - Wikipedia)。

mxlとmxlmxの設定


AkaiKKRの入力ファイルの中では、どの軌道まで計算するかを入力ファイルの mxl で指定する必要があります。
更に、これを受けてspecx.fではmakeの前にあらかじめどの軌道まで計算できるかを mxlmx で指定しておく必要があります。この対応関係を以下に示します。


spdf
mxl0123
mxlmx1234
table.1: 計算する電子の軌道と設定すべきmxl,mxlmxの関係

ここで注意しなければならないのは、mxlmxのほうが常にmxlよりも1以上大きくなければならないと言う点です。このことはAkaiKKRのマニュアルや計算機マテリアルデザイン入門 (大阪大学新世紀レクチャー)では分かりにくいのですが、実を言うとspecx.fのなかにコメントとして記入されています。

note: mxlmx is l_max + 1 where l_max is the maximum angular momentum used in the calculation.

msizmxの設定


更にspecx.fのなかのmsizmxも、どの軌道まで計算するかに依存します。

AkaiKKRのマニュアルや計算機マテリアルデザイン入門 (大阪大学新世紀レクチャー)には以下の式が書かれています。

\sum_{i = 1}^{\mathrm{natm}}(l_{max,i}+1)^2

これは各原子位置において、異なる軌道まで計算するときのことを考えてシグマを使った和の形にしていますが、全て同じ軌道まで計算するのなら以下の様に簡単になります。

msizmx ≧ natmmx * mxlmx2

例えばhow to run a system of over 30 atoms?の例の様に単位格子の中の原子の数が30個でd軌道(l=2)まで計算する場合は msizemx ≧ 30 * (2 + 1)2 = 270 が必要になります。msizmxにいくつが必要になるのかの早見表を以下に示します。一列目が原子数です。

spdf
114916
2281832
33122748
44163664
55204580
66245496
772863112
883272128
993681144
10104090160
11114499176
121248108192
131352117208
141456126224
151560135240
161664144256
171768153272
181872162288
191976171304
202080180320
212184189336
222288198352
232392207368
242496216384
2525100225400
2626104234416
2727108243432
2828112252448
2929116261464
3030120270480
3131124279496
3232128288512
table.2: msizmxに必要な値の原子数・角運動量依存性


参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama specx.f 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPAecaljモンテカルロ解析常微分方程式odeトランジスタ状態密度DOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフト分散関係HP6632AI2C可変抵抗トランジスタ技術ブレッドボード温度解析R6452A反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358マフィンティン半径フォトカプラシュミットトリガカオスLED三端子レギュレータGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBTL431数値微分アナログスイッチカレントミラー74HC4053サーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学起電力awkブラウン運動スーパーセルUbuntu差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMP井戸型ポテンシャル固有値問題シュレディンガー方程式TeX2SC1815結晶磁気異方性OPA2277フラクタルFSM固定スピンモーメントc/a非線型方程式ソルバgnuplot全エネルギーfcc初期値マンデルブロ集合縮退正規分布interp1ウィグナーザイツ胞L10構造multiplotフィルタ面心立方構造PGAハーフメタル二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型キーボード半金属フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金Realforce軸ラベルグラフの分割凡例線種シンボルMAS830LCK1026LMC662PIC16F785トランス関数フィッティングトラックボールPC等価回路モデルヒストグラムパラメータ・モデル不規則局所モーメント最小二乗法TS-112TS-110直流解析ExcelGimp円周率片対数グラフ両対数グラフspecx.f疎行列三次元ifort文字列不純物問題P-10等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン入出力境界条件陰解法AACircuit熱拡散方程式HiLAPWMBEEAGLE連立一次方程式ナイキスト線図負帰還安定性Crank-Nicolson法日本語

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ