Scilabで非線形方程式ソルバ その3

Scilabで非線形方程式ソルバ その1その2では関数の解を非線形方程式ソルバで計算しました。
今回は、離散データに対しても似たような解を求めるために、関数の補完と組み合わせるという事を行いました。

001_201502150526487fb.png
Fig.1: 離散データに対する補完と非線形方程式ソルバ



離散データのfsolve


Scilabで非線形方程式ソルバ その1その2では関数 f(x) がゼロとなる x を探す方法を書きました。今回は f(x) が具体的な関数の形ではなく、離散データとして与えられている場合について書きます。

と言ってもやっていることは簡単で、離散データを内挿(補間)してから解を求めるだけです。

今回はScilabで非線形方程式ソルバ その1との比較のために対数関数を例にしますが、実際の離散データは実験データであったり、複雑な数値計算(例えば第一原理計算や回路シミュレーション)の結果得られる数値列を想定します。

離散データの補完にはScilabでデータの補間で紹介したinterp1を利用します。
interp1の補間方法のデフォルトは線形補完(linear)のようです。今回のエントリでは最近接(nearest)は使えません。

スクリプト


スクリプトはlogsolve2_sce.txtとなりました。

今回は、離散データ自体もスクリプト内部で用意しましたが、実験データや、ほかの数値データを読み込む場合にはExcelデータを Scilabで読みこむScilabで大容量のCSV(テキスト)ファイルを読み込む,Scilabで大容量のCSV(テキスト)ファイルを読み込む2などを参照してください。

clear;

// *** データの作成 ***
X = linspace(0.1,10,15);
Y = log(X);

// *** 解くべき関数の定義 ***
function y = func(x)
// y = log(x) - yp;
// y = interp1(X, Y, x, "spline") - yp; // スプライン補完
y = interp1(X, Y, x, "linear") - yp; // 線形補完
endfunction

// *** 非線形方程式ソルバ ***
yp = 1; // yp = f(x)
x0 = 1; // ソルバ―の初期値
// 非線形方程式を解く
xp = fsolve(x0, func)
// 誤差
err = abs(xp - exp(yp))

// *** グラフのプロット ***
plot(X, Y, '.-b');
plot(X, yp * ones(Y), '--k');
plot(xp, yp, 'or');


結果


所詮、離散的な数値データから間の値を予測するだけなので、Scilabで非線形方程式ソルバ その1と比較すると結果に誤差が出ます。

線形補完を行った時の近似解と、真の値からの誤差は以下のようになりました。
 xp  =    2.737908
err = 0.0196261


スプライン補完を行った場合は、以下の通りです。
 xp  =    2.7130249
err = 0.0052569


今回の例ではスプライン補完の方が良い結果が得られているようです。

関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 非線形方程式ソルバ 補間 fsolve interp1 

Scilabで非線形方程式ソルバ その2

Scilabで非線形方程式ソルバ その1では、(解析的に解を得ることも可能な)非常に簡単な関数についてソルバ―を用いて解を求めました。

しかし前回の関数は、得られる解が一つだけでした。
では、解が二つ以上得られる場合、例えば二次関数の解を求める場合はどうなるのでしょうか?

002_20150212083236a8a.png

Fig.1: y = x2 と y = 1 の交点のx座標を計算した結果(上)。非線形方程式ソルバに与えた初期値x0とその結果として得られる解の関係(下)。


結論から言うと、非線形方程式ソルバでは解が一つしか得られず、その値はパラメータとして与える初期値に依存します。得られる解は、与えた初期値に近い値となりますが、必ずしも最も近い値になるというわけではないようなので、初期値の選び方は慎重に行う必要があります。


初期値の重要性


Scilabで非線形方程式ソルバ その1では、単純な対数関数の解を非線形方程式ソルバ―を用いて計算し、解析解と一致することを確認しました。

今回は x2 - 1 = 0 の解が、初期値 x0 の値によってどのように変化するかを確認します。

今回の記事で着目する二次関数と対数関数の違いは、得られる解が一つであるか二つであるかという事です。
Scilabの非線形方程式ソルバーは、数値的に解の近似値を計算するため、実際には複数の解が存在する場合であっても解が一つしか出てきません。
多くの場合、物理的に意味のある解は一つだけだったりするのですが、上手く重要な解を得るためには、初期値をどのように設定するかが重要になります。

x2 - 1 = 0 の解は当然ながら x=1 と x=-1 の二つなのですが、ソルバ―に与える初期値に応じてどちらの解が得られるかを確認するのが今回のエントリの趣旨です。

なお、多項式のすべての解をすべて一気に計算するための命令もScilabには用意されています。(参考: roots)

スクリプト


今回計算するSciabスクリプトはparabolicsolve_sce.txtです。

clear;

// *** データの作成 ***
X = linspace(-2,2);
Y = X .^ 2;

// *** 解くべき関数の定義 ***
function y = func(x)
y = x .^ 2 - yp;
endfunction

// *** 非線形方程式ソルバ ***
yp = 1; // yp = f(x)
x0 = 2; // ソルバ―の初期値
// 非線形方程式を解く
xp = fsolve(x0, func)

// *** 非線形方程式の初期値依存性 ***
X0 = X;
XP = fsolve(X0, func);

// *** グラフのプロット ***
subplot(2,1,1);
plot(X, Y, '-b');
plot(X, yp * ones(Y), '--k');
plot(xp, yp, 'or');
xlabel("x")
ylabel("y")

subplot(2,1,2);
plot(X0, XP, '-or')
xlabel("x0")
ylabel("xp")


結果


結果は、冒頭に紹介したFig.1です。
注目すべきは下のパネルの x0 = 0 近傍の挙動です。
必ずしも最も近い解が得られるわけではなく、初期値の微妙な変化で得られる解が振動していることがわかります。

なお、とにかくたくさん解がありそうな場合は、グラフを描いてみるのが良いです。Scilabでジバニャン方程式は f(x,y) = 0 となる x と y の組み合わせをすべてプロットしたものです。

関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 非線形方程式ソルバ fsolve 初期値 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ