AkaiKKRでコバルトの格子定数 その4

六方最密充填構造(hcp)の結晶はaとc/aの二つの格子定数を指定する必要があります。第一原理計算から、全エネルギーの最小化の条件からこれらのパラメータを決めることができます。
今回は、Equation of State and equilibrium configuration of hcp Titaniumで紹介されている準ニュートン法を使ってc/aの最適化を行うスクリプトを作成し、hcpコバルトの計算を行ってみました。


c/aの最適化


体心立方構造(bcc)や面心立方構造(fcc)など立方晶系の結晶は、格子定数が一種類しかないので、比較的簡単に格子定数の最適化が可能です。しかしながら、より対称性の低い構造の結晶の場合、変化させなければならない格子定数がたくさんになり大変になります。

ねがてぃぶろぐでは、これまでAkaiKKR(machikaneyama)を用いて六方最密充填構造(hcp)のコバルトに対して、以下の3つのエントリで格子定数の最適化を試みました。

その後、Equation of State and equilibrium configuration of hcp Titaniumというページを見つけたので、今回は同様のスクリプトを作成してみました。一連のエントリの名前の統一感が無くなってしまっていますが、今回はトータルで4回目という事で「その4」としました。

マフィンティン半径


AkaiKKRでコバルトのc/a その1, その2で書いた通りAkaiKKRはマフィンティン球近似を行っているので全エネルギーの比較をする際には、格子体積とマフィンティン球の体積の比を一定にしておく必要があります。そして、この条件を満たす範囲でMT半径をできるだけ大きく採るのが好ましいはずです。

具体的にはどのようにこの条件を満たすのがベストなのかはわかりませんが、今回はシェルスクリプトの中にあらかじめc/aの範囲が超えてはいけない上限と下限を与えておくことにしました。(ETA0とETA1)

準ニュートン法のスクリプトのアルゴリズム


E(η)の関係は、実際にはどのような関数の形をしているかわかりませんが、最適なη(≡c/a)で全エネルギーEが最小になる、下に凸の形をしているはずです。そこでE(η)の関係が(少なくともηの最適値の近くの比較的狭い範囲では)二次関数で近似できると仮定します。
Maximaで3点を通る放物線で書いた通り、独立な3点 (η1, E1), (η2, E2), (η3, E3)が分かっていれば、その3点を通る放物線を求めることができます。そこで、適当にηを3点ほど選んで、その時の全エネルギーの第一原理計算の結果から、エネルギーが最小になるηの値を推定することを考えます。

E(η)=a(η-ηmin)2+Emin

η(≡c/a)の初期値をηiniとしたときにE(ηini),E(0.99*ηini),E(1.01*ηini)の全エネルギーを計算したのち、放物線の頂点でもう一度第一原理計算を行うスクリプトを書きます。

コバルトのc/aの計算


作成したシェルスクリプトは qnewt_sh.txt で、入力ファイルのテンプレートは hcpCo_Template_in.txt です。
以下のようなディレクトリ構成とします。
hcpCo/─┬─analysis/
├─in/
├─out/
├─data/
├─template/─hcpCo_Template.in
└─qnewt.sh

このシェルスクリプトを格子体積を 150 Bohr3 c/aの初期値を 1.60 として実行してみました。
./qnewt.sh 150 1.60

すると次のような出力が表示されます。
1.60000000 -5573.7540546 -3.17105
1.58400000 -5573.7533001 3.15755
1.61600000 -5573.7544598 3.24135
Guess:
1.62701252 -5573.7545691 3.24756
Next:
./qnewt.sh 150 1.62701252

Guessの値が推定値です。
Nextの次の行に書かれている
./qnewt.sh 150 1.62701252

をコピペして実行すれば、今回の推定値を初期値として次の計算を開始することができます。
次の計算の結果は 1.62837316 がc/aの推定値となり、前回の値である 1.62701252 とほぼ同じ値です。更にもう一回やっても 1.62739097 となりこれ以上は改善しそうにありません。

この一連の計算の各ステップの推定値は analysis ディレクトリにファイルを作って出力するようになっています。
上記の例では analysis/hcpCo_150.txt というファイルが作成されているはずです。
1.62701252 -5573.7545691 3.24756
1.62837316 -5573.7545706 3.24800
1.62739097 -5573.7545698 3.24769


今回はhcp構造のc/aを決定するためにシェルスクリプトを作成しましたが、似たような方法で正方晶(tetragonal)のc/aを決めるためにも使えるでしょうし、格子定数が1種類しかない立方晶(cubic)なら平衡格子定数を決めるためにも使えると思います。
ただし(今回に限った話ではありませんが)注意しなければならない点として、シェルスクリプト自体は第一原理計算が正しく収束しているかを感知しません。したがってユーザー側が目視で確認を行う必要があります。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR c/a 強磁性 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ