AkaiKKRでコバルトの格子定数 その4

六方最密充填構造(hcp)の結晶はaとc/aの二つの格子定数を指定する必要があります。第一原理計算から、全エネルギーの最小化の条件からこれらのパラメータを決めることができます。
今回は、Equation of State and equilibrium configuration of hcp Titaniumで紹介されている準ニュートン法を使ってc/aの最適化を行うスクリプトを作成し、hcpコバルトの計算を行ってみました。


c/aの最適化


体心立方構造(bcc)や面心立方構造(fcc)など立方晶系の結晶は、格子定数が一種類しかないので、比較的簡単に格子定数の最適化が可能です。しかしながら、より対称性の低い構造の結晶の場合、変化させなければならない格子定数がたくさんになり大変になります。

ねがてぃぶろぐでは、これまでAkaiKKR(machikaneyama)を用いて六方最密充填構造(hcp)のコバルトに対して、以下の3つのエントリで格子定数の最適化を試みました。

その後、Equation of State and equilibrium configuration of hcp Titaniumというページを見つけたので、今回は同様のスクリプトを作成してみました。一連のエントリの名前の統一感が無くなってしまっていますが、今回はトータルで4回目という事で「その4」としました。

マフィンティン半径


AkaiKKRでコバルトのc/a その1, その2で書いた通りAkaiKKRはマフィンティン球近似を行っているので全エネルギーの比較をする際には、格子体積とマフィンティン球の体積の比を一定にしておく必要があります。そして、この条件を満たす範囲でMT半径をできるだけ大きく採るのが好ましいはずです。

具体的にはどのようにこの条件を満たすのがベストなのかはわかりませんが、今回はシェルスクリプトの中にあらかじめc/aの範囲が超えてはいけない上限と下限を与えておくことにしました。(ETA0とETA1)

準ニュートン法のスクリプトのアルゴリズム


E(η)の関係は、実際にはどのような関数の形をしているかわかりませんが、最適なη(≡c/a)で全エネルギーEが最小になる、下に凸の形をしているはずです。そこでE(η)の関係が(少なくともηの最適値の近くの比較的狭い範囲では)二次関数で近似できると仮定します。
Maximaで3点を通る放物線で書いた通り、独立な3点 (η1, E1), (η2, E2), (η3, E3)が分かっていれば、その3点を通る放物線を求めることができます。そこで、適当にηを3点ほど選んで、その時の全エネルギーの第一原理計算の結果から、エネルギーが最小になるηの値を推定することを考えます。

E(η)=a(η-ηmin)2+Emin

η(≡c/a)の初期値をηiniとしたときにE(ηini),E(0.99*ηini),E(1.01*ηini)の全エネルギーを計算したのち、放物線の頂点でもう一度第一原理計算を行うスクリプトを書きます。

コバルトのc/aの計算


作成したシェルスクリプトは qnewt_sh.txt で、入力ファイルのテンプレートは hcpCo_Template_in.txt です。
以下のようなディレクトリ構成とします。
hcpCo/─┬─analysis/
├─in/
├─out/
├─data/
├─template/─hcpCo_Template.in
└─qnewt.sh

このシェルスクリプトを格子体積を 150 Bohr3 c/aの初期値を 1.60 として実行してみました。
./qnewt.sh 150 1.60

すると次のような出力が表示されます。
1.60000000 -5573.7540546 -3.17105
1.58400000 -5573.7533001 3.15755
1.61600000 -5573.7544598 3.24135
Guess:
1.62701252 -5573.7545691 3.24756
Next:
./qnewt.sh 150 1.62701252

Guessの値が推定値です。
Nextの次の行に書かれている
./qnewt.sh 150 1.62701252

をコピペして実行すれば、今回の推定値を初期値として次の計算を開始することができます。
次の計算の結果は 1.62837316 がc/aの推定値となり、前回の値である 1.62701252 とほぼ同じ値です。更にもう一回やっても 1.62739097 となりこれ以上は改善しそうにありません。

この一連の計算の各ステップの推定値は analysis ディレクトリにファイルを作って出力するようになっています。
上記の例では analysis/hcpCo_150.txt というファイルが作成されているはずです。
1.62701252 -5573.7545691 3.24756
1.62837316 -5573.7545706 3.24800
1.62739097 -5573.7545698 3.24769


今回はhcp構造のc/aを決定するためにシェルスクリプトを作成しましたが、似たような方法で正方晶(tetragonal)のc/aを決めるためにも使えるでしょうし、格子定数が1種類しかない立方晶(cubic)なら平衡格子定数を決めるためにも使えると思います。
ただし(今回に限った話ではありませんが)注意しなければならない点として、シェルスクリプト自体は第一原理計算が正しく収束しているかを感知しません。したがってユーザー側が目視で確認を行う必要があります。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR c/a 強磁性 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ