AkaiKKRでコバルトの格子定数 その4

六方最密充填構造(hcp)の結晶はaとc/aの二つの格子定数を指定する必要があります。第一原理計算から、全エネルギーの最小化の条件からこれらのパラメータを決めることができます。
今回は、Equation of State and equilibrium configuration of hcp Titaniumで紹介されている準ニュートン法を使ってc/aの最適化を行うスクリプトを作成し、hcpコバルトの計算を行ってみました。


c/aの最適化


体心立方構造(bcc)や面心立方構造(fcc)など立方晶系の結晶は、格子定数が一種類しかないので、比較的簡単に格子定数の最適化が可能です。しかしながら、より対称性の低い構造の結晶の場合、変化させなければならない格子定数がたくさんになり大変になります。

ねがてぃぶろぐでは、これまでAkaiKKR(machikaneyama)を用いて六方最密充填構造(hcp)のコバルトに対して、以下の3つのエントリで格子定数の最適化を試みました。

その後、Equation of State and equilibrium configuration of hcp Titaniumというページを見つけたので、今回は同様のスクリプトを作成してみました。一連のエントリの名前の統一感が無くなってしまっていますが、今回はトータルで4回目という事で「その4」としました。

マフィンティン半径


AkaiKKRでコバルトのc/a その1, その2で書いた通りAkaiKKRはマフィンティン球近似を行っているので全エネルギーの比較をする際には、格子体積とマフィンティン球の体積の比を一定にしておく必要があります。そして、この条件を満たす範囲でMT半径をできるだけ大きく採るのが好ましいはずです。

具体的にはどのようにこの条件を満たすのがベストなのかはわかりませんが、今回はシェルスクリプトの中にあらかじめc/aの範囲が超えてはいけない上限と下限を与えておくことにしました。(ETA0とETA1)

準ニュートン法のスクリプトのアルゴリズム


E(η)の関係は、実際にはどのような関数の形をしているかわかりませんが、最適なη(≡c/a)で全エネルギーEが最小になる、下に凸の形をしているはずです。そこでE(η)の関係が(少なくともηの最適値の近くの比較的狭い範囲では)二次関数で近似できると仮定します。
Maximaで3点を通る放物線で書いた通り、独立な3点 (η1, E1), (η2, E2), (η3, E3)が分かっていれば、その3点を通る放物線を求めることができます。そこで、適当にηを3点ほど選んで、その時の全エネルギーの第一原理計算の結果から、エネルギーが最小になるηの値を推定することを考えます。

E(η)=a(η-ηmin)2+Emin

η(≡c/a)の初期値をηiniとしたときにE(ηini),E(0.99*ηini),E(1.01*ηini)の全エネルギーを計算したのち、放物線の頂点でもう一度第一原理計算を行うスクリプトを書きます。

コバルトのc/aの計算


作成したシェルスクリプトは qnewt_sh.txt で、入力ファイルのテンプレートは hcpCo_Template_in.txt です。
以下のようなディレクトリ構成とします。
hcpCo/─┬─analysis/
├─in/
├─out/
├─data/
├─template/─hcpCo_Template.in
└─qnewt.sh

このシェルスクリプトを格子体積を 150 Bohr3 c/aの初期値を 1.60 として実行してみました。
./qnewt.sh 150 1.60

すると次のような出力が表示されます。
1.60000000 -5573.7540546 -3.17105
1.58400000 -5573.7533001 3.15755
1.61600000 -5573.7544598 3.24135
Guess:
1.62701252 -5573.7545691 3.24756
Next:
./qnewt.sh 150 1.62701252

Guessの値が推定値です。
Nextの次の行に書かれている
./qnewt.sh 150 1.62701252

をコピペして実行すれば、今回の推定値を初期値として次の計算を開始することができます。
次の計算の結果は 1.62837316 がc/aの推定値となり、前回の値である 1.62701252 とほぼ同じ値です。更にもう一回やっても 1.62739097 となりこれ以上は改善しそうにありません。

この一連の計算の各ステップの推定値は analysis ディレクトリにファイルを作って出力するようになっています。
上記の例では analysis/hcpCo_150.txt というファイルが作成されているはずです。
1.62701252 -5573.7545691 3.24756
1.62837316 -5573.7545706 3.24800
1.62739097 -5573.7545698 3.24769


今回はhcp構造のc/aを決定するためにシェルスクリプトを作成しましたが、似たような方法で正方晶(tetragonal)のc/aを決めるためにも使えるでしょうし、格子定数が1種類しかない立方晶(cubic)なら平衡格子定数を決めるためにも使えると思います。
ただし(今回に限った話ではありませんが)注意しなければならない点として、シェルスクリプト自体は第一原理計算が正しく収束しているかを感知しません。したがってユーザー側が目視で確認を行う必要があります。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR c/a 強磁性 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ