ecaljでB-dopedダイヤモンド

ecaljと仮想結晶近似(VCA)を用いて、ダイヤモンドの炭素原子を5%ホウ素に置換したホウ素ドープダイヤモンドの電子構造を計算しました。結果は、AkaiKKRでB(N)-dopedダイヤモンドAkaiKKRでリジッドバンド模型もどきの結果と調和的で、純粋なダイヤモンドは絶縁体、ホウ素をドープしたダイヤモンドは金属的なバンド構造となりました。

bandplot-bdia-vca.png
Fig.1: ダイヤモンドとホウ素をドープしたダイヤモンドのバンド構造



仮想結晶近似(VCA)


不規則合金の電子構造の計算を行うためには、色々な近似が考えられます。
AkaiKKRでB(N)-dopedダイヤモンドでは、AkaiKKR(Machikaneyama)に実装されているコヒーレントポテンシャル近似(CPA)を用いました。AkaiKKRでリジッドバンド模型もどきでは、AkaiKKRを少しトリッキーに使い、リジッドバンド模型のような計算を行いました。他にもスーパーセルを使う方法も考えられます(参考: AkaiKKRでスーパーセル その1)。

今回は、更に別の方法として仮想結晶近似(VCA)を用いてホウ素をドープしたダイヤモンドの電子構造をecaljを用いて計算しました。

なお、これらの近似のエライ(つまり、近似として上等である)順番は、コヒーレントポテンシャル近似、仮想結晶近似、リジッドバンド模型です。スーパーセル法とコヒーレントポテンシャル近似は、どちらも一長一短なので、必ずしもどちらがエライというわけでもないはずです。

計算手法


計算手法は、基本的にはecaljで仮想結晶近似と同様です。通常通り、ダイヤモンドの結晶構造ファイルを作成します(参考: ecaljの実行手順(LDA計算), ecaljでシリコンのバンド構造(LDA計算))。
STRUC   ALAT=6.74
PLAT=0.0 1/2 1/2
1/2 0.0 1/2
1/2 1/2 0.0
SITE ATOM=C POS=0.0 0.0 0.0
ATOM=C POS=1/4 1/4 1/4

この結晶構造ファイルから ctrlgenM1.py を用いて制御ファイルを自動生成させます。

更にこの制御ファイルをテキストエディタで編集します。今回は、炭素(原子番号:6)の5%をホウ素(原子番号:5)に置換するので 6*0.95 + 5*0.05 = 5.95 とします。
SPEC
ATOM=C Z=5.95 R=1.42


計算結果


計算結果のバンド構造をFig.1に、状態密度をFig.2に示します。

tdos-bdia-vca.png
Fig.2: ダイヤモンドと炭素の5%をホウ素に置換したダイヤモンドの状態密度


純粋なダイヤモンドは半導体ですが、ホウ素をドープしたダイヤモンドはフェルミ準位が荷電しバンドの中にあるような、金属的なバンド構造になりました。仮想結晶近似(VCA)は、コヒーレントポテンシャル近似(CPA)とリジッドバンド模型の中間のエラさに位置するので、当然ながらこれら二つと似たような結果になります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 仮想結晶近似 VCA 半導体 ダイヤモンド 

ecaljで仮想結晶近似

ecaljの仮想結晶近似(VCA)の機能を用いてbcc Fe1-xCoxの状態密度を計算しました。
その結果、AkaiKKRでFeCoの磁気モーメントと格子定数で計算したコヒーレントポテンシャル近似(CPA)の結果と似たような挙動が確認できました。

FeCo.gif

Fig.1: 仮想結晶近似(VCA)によるbcc Fe1-xCoxの状態密度



合金の電子状態


固体物理の多くの第一原理計算パッケージでは、結晶の周期性を利用しているため不規則構造の計算が苦手です。AkaiKKR(machikaneyama)は、コヒーレントポテンシャル近似(CPA)を用いて不規則性を扱います。合金を扱うほかの方法としては、スーパーセル法(参考: AkaiKKRでスーパーセル その1)などがあります。これ以外にもCPAよりももう一歩手前の近似法として仮想結晶近似(VCA: Virtual Crystal Approximation)というものが存在します。

ecaljのマニュアルを読むと、どうやらVCAが使えるようなので、今回は体心立方構造(bcc)のFe1-xCoxの状態密度を計算してみました。

計算手順


ecaljのマニュアルのP15にはYou can use Z=37.5 for virtual crystal approximation, however, you can not do it in ctrls now. Edit it in ctrl file.のように書いてあります。そこで通常通りbcc鉄の結晶構造ファイルを作り ctrlgenM1.py--nspin=2 のオプションを与えて制御ファイルを作成します(参考: ecaljで強磁性鉄のスピン分極計算)。

この後、作成した制御ファイルの原子番号Zを編集します。例えばFe0.8Co0.2なら、原子番号が26の鉄と27のコバルトの合金なので 26*0.8 + 27*0.2 = 26.2ということだと思います。(しかしこれだとFe0.9Ni0.1でも同じ結果になってしまう?私が何か勘違いしている?)

結果


以下に計算結果の純鉄とFe0.8Co0.2の状態密度を示します。

FeCo0.png
FeCo20.png

Fig.2-3: bcc Feとbcc Fe0.8Co0.2の状態密度


コバルト濃度を増していくと、アップスピンの状態密度が低エネルギー側へ移動していくような挙動が見られました。これはAkaiKKRでFeCoの磁気モーメントと格子定数で計算した結果と似たような挙動であることが分かります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 強磁性 仮想結晶近似 VCA 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ