回路シミュレータは考察をしてくれない

2ちゃんねるの回路シミュレータスレの>>184以降の流れに関してのコメント。

電子回路系シミュレータの部屋
http://ai.2ch.net/test/read.cgi/denki/1380085010/184-

現実の回路と比べて、シミュレーションがどの程度現実的なのかは人間が判断しなければいけません。


これは、本当に大事な話なのですが、なかなかこういう話は記事にはし難いです。

ねがてぃぶろぐは、回路シミュレーションをメインのひとつに掲げているので、(自分を含む)電子工作初級者にも回路シミュレーションはとても有用である、との主張を行っています。
この主張自体にはもちろん嘘はなくて、例えば回路シミュレータの使いどころの記事などを読んでいただければ、そのことが分かっていただけると思っています。

ただし、この話には続きがあって、回路シミュレーションを走らせたら、それだけで満足してはいけませんよ、と言うことです。この事も既にエントリにまとめてあって回路シミュレーションと実測の比較がそれにあたるわけなのですが、この事はどんなに強調しても強調し足りないです。

これは、シミュレーションをしたら、その結果が現実の回路をどの程度再現しているのかを、何らかの方法でチェックしましょうという話です。もちろん一番の正攻法は、実際に同様の回路を作成して、測定をしてみることです。(電子回路上級者ならば、実際に製作を行わなくても、ある程度、妥当性を見極めることが出来るのでしょうが・・・)

「回路シミュレータは初級者にも有用」は事実だと思っています。
しかし、時々勘違いされている感があるのですが「回路シミュレータがあれば初級者でも上級者と同レベルの回路設計が出来る」は明らかに間違いです。

tag: LTspice 

LTspiceで日本語コメント

株式会社e-skettのウエブページにてLTspice用日本語表示変換ソフトが公開されています。これを使うことによって、LTspiceの回路図上に日本語でコメントを書き込むことができるようになります。

001_20130601012704.pngFig.1: 日本語コメントの例



日本語コメント


LTspiceは、標準では日本語のコメントを入力する機能を持っていません。
ねがてぃぶろぐのアクセス解析を調べてみても「LTspice 日本語 コメント」といった検索単語からこられる方も多く、日本語でコメントを入力することに対する潜在的な需要が大きいことが分かります。

これは、回路シミュレータに限らずCADソフト全般に対して言えることです。例えば、PCBエディタとして有名なEagleも外国製のソフトのためプリントパターン内に日本語を入力することが出来ません。これに対して、EAGLE基板/回路図に日本語を描くでは、ストロークフォントKST32Bを用いて回路パターンとして文字を表現するという事を行っています。

これと同様のことをLTspiceで行えば、回路図上に日本語のコメントを書き込む(描き込む)ことができます。

今回紹介するLTspice用日本語表示変換ソフトLTSJTextは、LTspiceの回路図ファイルに書き込まれた日本語コメントを、自動でストロークフォントによるライン描画に置き換えてくれるソフトです。

LTSJTextの使い方


LTSJTextの使い方は、(本家サイトの解説と大差ないですが)大雑把には以下の通りです。

私の試した環境ではWindows XP Professional (32bit)とWindows server 2008 R2(64bit)で動作しました。なお、本家である株式会社e-skettのページではWindowsXP、Windows7(64bit)、Windows8(64bit,デスクトップ)で動作確認を行っています。と書かれています。

  1. .Net framework 4.0以降のインストール
  2. LTSJTextのインストール
  3. 送るフォルダ(SendTo)にショートカットを作成


まず.NET Framework 4.5 のインストールを行います。(Windows XPの場合は.NET Framework 4.0を使います。)

次に本家の株式会社e-skettまたはVectorのLTSJText(LTspice用日本語テキスト変換ソフト)からLTSJTextをダウンロード、展開します。
展開して出来たフォルダはどこにおいてもかまいませんが、私はLTspice本体と同じフォルダにおいています。LTspiceのインストールと初期設定の手順でインストールしてあるならば"C:¥LTspiceIV¥LTSJText¥"または"C:¥Program Files¥LTC¥LTspiceIV¥LTSJText¥"です。

次に展開して出来たLTSJText.exeのショートカットを作ります。素直にデスクトップなどにショートカットを作っても良いですが、私は送る(SendTo)フォルダにショートカットを作りました。このようにしておけば.ascファイルを右クリックから日本語テキスト化することが出来ます。

それでは、日本語コメントを書き込んでみます。
ショートカットキー"t"からEdit Text on the Schematic:ウインドウを立ち上げ、普通に日本語のコメントを打ち込みます。(Fig. 2)


002_20130601012704.png
Fig.2: 日本語コメントの入力


すると、文字化けしたものが回路図上に入力されまが、気にせずこのまま保存します。このとき注意すべき点は、パスにスペース(空白記号)を含むフォルダに保存してはいけないということです。空白を含むフォルダに保存するとうまく日本語コメントに変換出来ません。


003_20130601012702.pngFig.3: 文字化けした回路図


文字化けしたまま保存した.ascファイルをLTSJText.exe(のショートカット)の上にドラッグアンドドロップします。送るフォルダにショートカットを作った場合は、右クリックから送ります。
するとFig.4のようなウインドウが立ち上がり、変換が完了します。


004_20130601012702.png

Fig.4: LTSJText.exeのウインドウ


元ファイルと同じフォルダに、ファイル名の末尾に_Jが付いたファイルが新たに出来ているはずです。

NG-SPICE + BSch3V


一方で、今回紹介した方法は、日本語の文字列をラインにして回路図上に書き込むといった方法をとっているため、一度書き込んだコメントを再編集する際には、もう一度最初から文字列を打ち込んでラインフォント化の手順を繰り返さなければいけません。

日本語コメントのみが問題というわけではないのでしょうが、純国産の(シミュレータ連動でない)回路図エディタで標準で日本語入力の機能が付いているもの(例えばBSch3Vなど。)とSPICEを組み合わせることに挑戦している人たちもいるようです。(参考:NG-SPICE+BSch3V - 回路シミュレーターWiki)

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice 日本語 

LTspice部品モデル作成術

LTspiceユーザーの多くがひそかに期待していたであろう、部品モデルの設計方法に関する凄い本が発売されました。堀米毅著定番回路シミュレータLTspice 部品モデル作成術: コンデンサ/トランジスタ/トランス/モータ/真空管…どんな部品もOK! (TOOL活用シリーズ)です。



この本は、入門書ではありません。

LTspiceの基礎はマスターしたものの「付属のモデルだけを使った大雑把なシミュレーション」と「より複雑な現実の回路の挙動」の間のギャップを埋めたいと考えている人に向けた、ワンステップ上の教科書です。


ねがてぃぶろぐが紹介されました


ねがてぃぶろぐが定番回路シミュレータLTspice 部品モデル作成術の中で参考情報があるウェブサイトとして、以下のサイトとともに紹介されました。

001_20130602180145.jpg

Fig.1: 第2章Appendix―LTspiceの参考情報があるウェブサイト(P44)


● ねがてぃぶろぐ
http://gomisai.blog75.fc2.com/blog-category-15.html
 ねがてぃぶろぐにあるLTspiceのカテゴリです.デバイス・モデリングにおいて等価回路技術を習得すると,自分で任意の電子部品の等価回路モデルを作成できます.そのとき等価回路をSPICE上のデバイスにするには,ABM(アナログ・ビヘイビア・モデル)ライブラリを活用します.そのABMの解説が丁寧に掲載されています.自分で試せるように,シミュレーション・データもアップロードされています.センサの等価回路モデルの作成方法の事例は,モデルの作り方の良い参考になると思います.


ABM(アナログ・ビヘイビア・モデル)の解説というのはLTspiceでビヘイビア電源ほかのことだと思います。

前述の参考情報があるウェブサイトとして挙げられている中で、ねがてぃぶろぐだけがアマチュア向けに個人がやってるブログというか、ありていに言うと小物臭が漂ってるのですが、それでもピックアップされたのは恐らく、多少なりとも自分でデバイスのモデリングまで手を付けているからだと思います。


パラメータ・モデルと等価回路モデル


定番回路シミュレータLTspice 部品モデル作成術では、その名前の通りLTspiceでシミュレーションする際の部品のモデルをいかにして作成するかに着目をした書籍です。

この本では、SPICEモデルを以下のように2種類に分類しており、書籍中の前半でパラメータモデル、後半で等価回路モデルの作成方法の解説をしています。

● SPICEモデルは2種類ある
 SPICEモデルを分類すると2種類あります.パラメータ・モデルと等価回路モデルです.パラメータ・モデルは,モデル・パラメータのみで表現されているSPICEモデルです.等価回路モデルは,名前の通り,電子部品が何らかの等価回路で表現されています.これらは,SPICEモデルのネットリストの最初の行で判断できます.
  • パラメータ・モデルの場合
    ネットリストの表記が.modelで始まる
  • 等価回路モデルの場合
    ネットリストの表記が.subcktで始まる


必ずしも一対一対応ではないですが、直感的に言えば個別半導体と集積回路(IC)の違いと思えばよいかもしれません。
複雑な回路に対して精密なシミュレーションを行う場合、回路に階層構造を持たせます。(参考:LTspiceで74HC4053また階層を持つ回路標準CMOSロジックのトランジスターモデル:ベルが鳴っています)
この場合は、パラメータモデルがより下位の、等価回路モデルがより上位の階層を担います。
階層構造を作ってよく使う部分を使いまわすというのは、プログラミングにおけるライブラリと同じ考え方です。

等価回路モデルに関しては、ねがてぃぶろぐでも簡単なものをたくさん扱っています。
例えばLTspiceで7414では、7414のデータシートにある等価回路図から等価回路モデルを作成しヒステリシス特性のシミュレーションを行っています。これらの等価回路を他の回路シミュレーションから呼び出すためには、サブサーキットの使用法を用いてそれぞれをサブサーキットにします。

001_20090328061018.png
Fig.2: 7414データシートの等価回路図

003_20090328061032.png
Fig.3: LTspiceによる等価回路モデル


他にも、ねがてぃぶろぐでは以下のような例を扱って来ました。


その反面、ねがてぃぶろぐではパラメータモデルは全く扱っていません。これは、単純に私にとって難しいからです。私以外にもパラメータモデルの作成をどうしたらよいか分からないと感じていた方は多いのではないでしょうか?

これに対して定番回路シミュレータLTspice 部品モデル作成術では、パラメータモデルと等価回路モデルの両方の具体的な設計方法が書かれています。

例えば、書籍の最初のほうにGSユアサの酸素センサ(KE-12)を等価回路モデルにするための具体的な方法が解説されています。

004_20130603060903.jpg
Fig.4: 酸素センサの構造

005_20130603060903.png
Fig.5: 作成された等価回路モデル


006_20130603060903.png

007_20130603060902.png

Fig.6-7: 出力電圧のカタログスペックとシミュレーション結果の比較



008_20130603060902.png

009_20130603060902.png

Fig.8-9: 応答速度のカタログスペックとシミュレーション結果の比較


定番回路シミュレータLTspice 部品モデル作成術では、さらに複雑なデバイスのモデリングとして「周波数特性+逆起電力+物理特性」を含んだDCモータや太陽電池など、通常のSPICEには用意されていないようなデバイスの例も解説されています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice 等価回路モデル パラメータ・モデル 

擬似Cカーブ可変抵抗の定数設計

LTspiceで擬似Cカーブ可変抵抗コメント欄にて、擬似Cカーブ可変抵抗の定数設計の実際について質問をいただきました。

擬似Cカーブ可変抵抗(Rc)は、Bカーブ可変抵抗(Rb)と並列に入れる固定抵抗(Rp)から構成されるためパラメータが二つ存在します。この二つのパラメータを上手に選ぶことによって擬似Cカーブ可変抵抗の抵抗値(Rc)とその曲率の二つを変化させることが出来ます。

001_20130515013645.png 002_20130515013644.png


擬似Cカーブ可変抵抗


電子回路の「ボリューム・つまみ」として可変抵抗は頻繁に使用されますが、そのつまみの回転角と抵抗値の間の関係は『直線的なBカーブ』『指数関数的なAカーブ』に加えて『対数関数的なCカーブ』の3種類が存在します。

001_20090216001312.png


しかしながら、前者2つと比べてCカーブの可変抵抗はほとんど使われることが無いため、電子工作部品としても入手がやや困難です。

このためLTspiceで擬似Cカーブ可変抵抗では、Bカーブの可変抵抗と並列に普通の固定抵抗を接続することで、抵抗値の変化を上に凸なCカーブ的なものに出来る事をシミュレーションから確認しました。

この記事に対して、コメント欄にて、通りすがりさんに設計に関する質問をいただきました。

はじめまして。
50kCカーブ2連ポットを探していてたどり着きました。
記事を拝見しましたが難しくて(^^;
50kCカーブを作ろうとしたら100kBカーブにどのくらいの抵抗を抱かせればいいのでしょうか?
ご教授いただければ幸いです。


そこで、今回のエントリでは、具体的に擬似Cカーブの可変抵抗を作るに当たっての定数設計に関して書きます。

並列抵抗Rpの計算式


設計する擬似Cカーブ可変抵抗の値をRc、使用するBカーブ可変抵抗の値をRb、並列に入れる固定抵抗の値をRpとします。

擬似Cカーブ可変抵抗Rcは、RbとRpの並列接続なのでその値は
\frac{1}{R_c}=\frac{1}{R_b}+\frac{1}{R_p} ・・・(1)
から
R_c = \frac{R_b R_p}{R_b + R_p} ・・・(2)
であると分かります。

これをRpについて解くと
R_p = \frac{R_b R_c}{R_b - R_c} ・・・(3)
となります。

Bカーブ可変抵抗Rbと並列抵抗Rpの決定


今回の計算例として通りすがりさんの値Rc=50kΩを使います。

(2)式からRcを決めるための未知数はRbとRpの2つあります。しかしながら、Rbは市販のBカーブ可変抵抗なので、おのずと選ぶことの出来る値が限られてきます。
入手性が良さそうで、並列にして50kΩが作れそうな抵抗値として、差し当たりRb = 100kΩ、150kΩ、200kΩ、500kΩあたりを検討することにします。

ここまででRc = 50kΩとRbの候補が4種類決まるので(3)式から、それぞれのRbに対応したRpが計算できます。

Bカーブ抵抗(Rb)並列抵抗(Rp)
100kΩ100kΩ
150kΩ75kΩ
200kΩ66.7kΩ
500kΩ55.6kΩ
table.1: Rc = 50kΩのときのRbとRpの組み合わせ


擬似Cカーブ可変抵抗の曲率


table.1に50kΩの擬似Cカーブ可変抵抗を構成することが出来るBカーブ可変抵抗と並列抵抗の組み合わせの例を挙げました。

では、これらは全て同じ特性となるのでしょうか?
―――答えはNOです。

このことを確認するためにLTspiceで擬似Cカーブ可変抵抗とほぼ同じ方法でLTspiceを用いて擬似Cカーブ可変抵抗の曲率を計算してみました。

ただし、グラフの横軸をBカーブ可変抵抗器の抵抗値にしてしまうとRbの値によって横軸がそろわなくなるので、多少トリッキーではありますがLTspiceで電圧制御抵抗(VCR)の方法を使いました。
fig.2の横軸の単位が電圧となっていますが、これは電圧ではなくBカーブ可変抵抗の回転角であると考えてください。0から1で端から端まで回しきるイメージです。

001_20130515013645.png
fig.1: 擬似Cカーブ可変抵抗のスケマティック

002_20130515013644.png

fig.2: 抵抗の組み合わせによる曲率の違い。横軸は電圧ではなく、可変抵抗の回転角と読み替えてください。(0で抵抗値が最小、1で最大。)


シミュレーション結果から、どの組み合わせであっても、つまみを最小から最大に回しきった時に設計どおり抵抗値が0Ωから50kΩまで変化することがわかります。
しかしながら、その曲率は抵抗の組み合わせによって異なっており、Bカーブ可変抵抗に大きい抵抗値を選ぶほど曲率が大きくなっています。

本物のCカーブ可変抵抗がこの中でどの曲率に一番近いのかは、残念ながら私は知りません。

対数的な変化をするCカーブ可変抵抗とは逆に、指数関数的な変化をするAカーブ可変抵抗は、オーディオの音量変化に頻繁に利用されます。これは、人間の五感が対数的な挙動を示すことが理由です。つまりオーディオのボリュームつまみに指数関数的なAカーブ可変抵抗を利用すると実際の音量も指数関数的に増えているにもかかわらず、人間の聴感からは直線的に音量が増えたように感じるということです。

Cカーブ可変抵抗もまた同様に、人間がつまみを回したときに『直線的に変化したな』と感じるような曲率になっているのが望ましいはずです。
実際のところ、私は擬似Cカーブ抵抗の使い道を自分でも良くわかっていないのですが、どういった曲率が人間にとって一番『しっくりくる』のかはカットアンドエラーで決めても良いのではないかと思います。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice 可変抵抗 

LTspiceで高耐圧ボルテージフォロワ

岡村 廸夫著定本 OPアンプ回路の設計にて紹介されている、高耐圧のボルテージフォロワのシミュレーションをLTspiceにて行いました。

002_20120813013233.png003_20120813013233.png


OPアンプの動作電源範囲


最近では、秋月電子通商などのアマチュアが簡単にアクセスできる店舗でもレールtoレール入出力OPアンプ―――OPアンプに入力する負電源と正電源に対してぎりぎりの電圧まで入力電圧・出力電圧を設定できるもの―――が入手できるようになりました。

これは、OPアンプは±15Vの両電源を用意して使うという常識がもはや成り立たなくなってしまっている事を意味します。(僕が電子工作を始めた頃には既に成り立っていなかったという話もありますが・・・)

こういった単電源・低電圧で動作するOPアンプは、しかしながら、多くの場合耐圧が低いため、高耐圧が要求されるアプリケーションでは、従来の汎用OPアンプにもまだ需要があるはずです。

更に、100Vを超えるような電源電圧でOPアンプを動作させたい場合は、OPアンプの動作回路にも一工夫が必要です。
今回は、定本 OPアンプ回路の設計にて紹介されている、高耐圧のボルテージフォロワのシミュレーションをLTspiceにて行いました。

ブートストラップによる電源作成


定本 OPアンプ回路の設計にて紹介されている多少複雑な回路図(fig.2)の前に、基本的な(しかしそのままでは動作しない)回路の説明をします。


001_20120813013219.png
fig.1: 原理的な回路図


この回路の考え方は、極めて単純で、出力電圧を中心に、ツェナーダイオードをOPアンプの電源端子に向けて対称に配置することにより、OPアンプの電源電圧をVout±Vzとなるようにするものです。
こうすることにより、VinをOPアンプの同相入力電圧範囲内に収めつつ、正電源端子と負電源端子の間の電位差ΔVを Vz ≦ ΔV ≦ 2*Vz とすることができます。

同様に入力電圧に応じて出源電圧を自動調整する回路としてハイサイド電流測定回路があげられます。

高耐圧ボルテージフォロワのシミュレーション


定本 OPアンプ回路の設計にて紹介されている回路に対して、シミュレーションに都合のよい定数を入力した回路図がfig.2です。


002_20120813013233.png
fig.2: 高耐圧ボルテージフォロワのスケマティック

003_20120813013233.png
fig.3: 出力電圧、及び各素子の消費電力


シンプルな回路(fig.1)から追加された要素は、OPアンプの電源用トランジスタQ3,Q4とOPアンプの出力ブースーターとなるQ1,Q2です。回路は基本的に上下対称なので、ハイサイド側に限って説明をします。

fig.3に示したグラフは、出力電圧(赤)と各素子の消費電力(緑:D1, 青:Q1, 紫:Q3)です。
こういった類の高電圧を扱う回路では、素子の耐圧と許容損失が重要になってきます。(参考:LTspiceで素子の発熱を見る)

なお、原典では電源電圧は±120Vとなっています。LTspiceで標準的に付属しているトランジスタモデルの中で、最も高耐圧である2N5550/2N5401でも耐圧は150Vだったので、シミュレーションでの電源電圧は差し当たり単電源100Vとしておきましたが、定本 OPアンプ回路の設計には、いつもどおりの景気のよさで下記の通りの記述があります。

Tr1~Tr4の耐電圧さえ許せば,図示の範囲に限らず500Vでも1,000Vでも振ることができます.この方法で製造された高耐圧OPアンプも市販されています.


赤で示した出力電圧は、0V付近と100V付近で多少飽和しています。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice OPアンプ 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ