AkaiKKRで反強磁性fcc鉄

AkaiKKR(machikaneyama)を用いて、強磁性、非磁性、簡単な反強磁性状態のfcc鉄の全エネルギーを計算しました。その結果、低温におけるfcc鉄は何らかの磁性を持つであろうことがわかりました。

001_20150616101545812.png

Fig.1: fcc鉄の第一種反強磁性。異なる向きのスピンをもつ原子がL10型構造のように配置されている。FCC鉄の磁気構造より



第一種反強磁性fcc鉄


鉄は室温で体心立方構造(body-centered cubic; bcc)を取る強磁性体です。そして910℃以上で面心立方構造(face-centered cubic; fcc)へと相転移します。bcc鉄のキュリー温度は770℃であるので、高温下におけるfcc鉄も常磁性です。

これに対して、もし室温でfcc構造の鉄が存在した場合、どのような磁性を持つのかは興味深い問題です。スピン密度はを持つ複雑な反強磁性であるというのが現在の理解であるようですが(参考: FCC鉄の磁気構造)、差し当たりAkaiKKRで反強磁性クロムのときと同様に、Fig.1のような簡単な反強磁性を仮定して第一原理計算を行います。
これはCuAu合金などにみられるL10構造と同じ形をしています。結晶系は、とりあえず簡単のため立方晶(cubic)であると仮定します。

AkaiKKRの入力ファイル


AkaiKKRの入力ファイルはブラべ格子と基底の組み合わせで表されます(参考: AkaiKKRのブラベ格子)。L10構造は、直感的に言えば、底心立方格子(base-centered cubic; bsc)の(0 0 0)と(1/2 0 1/2)に原子を置いた結晶構造です。ですが、当然ながら底心立方格子というブラべ格子は存在しない(単純正方格子(simple tetragonal)と等価)ので指定できません。もちろん単純正方として入力ファイルを作ってもよいのですが、格子定数fcc構造と異なってしまいややこしいのでc/a=1, b/a=1とした底心斜方格子(bso)で代用することにします。

入力ファイルの一例は以下のようになりました。

c-------------------------fccFe------------------------------
go data/fccFeAFMI
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bso 6.9 , 1 , 1 , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra gga91 mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.023
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Fe1 1 1 0.0 2 26 100
Fe2 1 1 0.0 2 26 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Fe1
1/2 0 1/2 Fe2
c------------------------------------------------------------


この反強磁性状態のものと強磁性、非磁性(スピン分極なし)の格子定数aを6.0-7.4 Bohrの範囲で全エネルギーを求めました。

結果と議論


全エネルギーと各原子の磁気モーメントの大きさをそれぞれFig.2-3に示します。

002_20150616101404f34.png
Fig.2: 全エネルギー

003_20150616101403636.png
Fig.3: 磁気モーメント


全エネルギーの比較からfcc構造における鉄は非磁性状態よりも反強磁性状態の方が安定であるという結果が得られました。しかしながら、最安定なのは強磁性状態という事になってしまいました。
このあたりはAkaiKKRで反強磁性クロムのときと同様にbzqltyが低いのか(参考: AkaiKKRでFeCoの磁気モーメントと格子定数)、整合反強磁性を仮定したためなのか良く分かりません。

また、各原子の局所スピンモーメントの大きさを比較したところ、格子定数を小さくしていったとき、反強磁性の方がスピンモーメントがじわじわと変化し、強磁性の方がスパッと変化をするようです。

関連エントリ




参考URL




付録


このエントリで使用したAkaiKKRのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 反強磁性 強磁性 面心立方構造 fcc L10構造 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ