スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

AkaiKKRで反強磁性fcc鉄

AkaiKKR(machikaneyama)を用いて、強磁性、非磁性、簡単な反強磁性状態のfcc鉄の全エネルギーを計算しました。その結果、低温におけるfcc鉄は何らかの磁性を持つであろうことがわかりました。

001_20150616101545812.png

Fig.1: fcc鉄の第一種反強磁性。異なる向きのスピンをもつ原子がL10型構造のように配置されている。FCC鉄の磁気構造より



第一種反強磁性fcc鉄


鉄は室温で体心立方構造(body-centered cubic; bcc)を取る強磁性体です。そして910℃以上で面心立方構造(face-centered cubic; fcc)へと相転移します。bcc鉄のキュリー温度は770℃であるので、高温下におけるfcc鉄も常磁性です。

これに対して、もし室温でfcc構造の鉄が存在した場合、どのような磁性を持つのかは興味深い問題です。スピン密度はを持つ複雑な反強磁性であるというのが現在の理解であるようですが(参考: FCC鉄の磁気構造)、差し当たりAkaiKKRで反強磁性クロムのときと同様に、Fig.1のような簡単な反強磁性を仮定して第一原理計算を行います。
これはCuAu合金などにみられるL10構造と同じ形をしています。結晶系は、とりあえず簡単のため立方晶(cubic)であると仮定します。

AkaiKKRの入力ファイル


AkaiKKRの入力ファイルはブラべ格子と基底の組み合わせで表されます(参考: AkaiKKRのブラベ格子)。L10構造は、直感的に言えば、底心立方格子(base-centered cubic; bsc)の(0 0 0)と(1/2 0 1/2)に原子を置いた結晶構造です。ですが、当然ながら底心立方格子というブラべ格子は存在しない(単純正方格子(simple tetragonal)と等価)ので指定できません。もちろん単純正方として入力ファイルを作ってもよいのですが、格子定数fcc構造と異なってしまいややこしいのでc/a=1, b/a=1とした底心斜方格子(bso)で代用することにします。

入力ファイルの一例は以下のようになりました。

c-------------------------fccFe------------------------------
go data/fccFeAFMI
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bso 6.9 , 1 , 1 , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra gga91 mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.023
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Fe1 1 1 0.0 2 26 100
Fe2 1 1 0.0 2 26 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Fe1
1/2 0 1/2 Fe2
c------------------------------------------------------------


この反強磁性状態のものと強磁性、非磁性(スピン分極なし)の格子定数aを6.0-7.4 Bohrの範囲で全エネルギーを求めました。

結果と議論


全エネルギーと各原子の磁気モーメントの大きさをそれぞれFig.2-3に示します。

002_20150616101404f34.png
Fig.2: 全エネルギー

003_20150616101403636.png
Fig.3: 磁気モーメント


全エネルギーの比較からfcc構造における鉄は非磁性状態よりも反強磁性状態の方が安定であるという結果が得られました。しかしながら、最安定なのは強磁性状態という事になってしまいました。
このあたりはAkaiKKRで反強磁性クロムのときと同様にbzqltyが低いのか(参考: AkaiKKRでFeCoの磁気モーメントと格子定数)、整合反強磁性を仮定したためなのか良く分かりません。

また、各原子の局所スピンモーメントの大きさを比較したところ、格子定数を小さくしていったとき、反強磁性の方がスピンモーメントがじわじわと変化し、強磁性の方がスパッと変化をするようです。

関連エントリ




参考URL




付録


このエントリで使用したAkaiKKRのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。
スポンサーサイト

tag: AkaiKKR machikaneyama KKR 反強磁性 強磁性 面心立方構造 fcc L10構造 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。