AkaiKKRでPd-Rh二相共存領域

二元系の状態図には、全率固溶型や共融型などいくつかのパターンが存在します。Pd-Rhの二元系では、端成分が共に面心立方構造となっています。そのため高温では固溶体となります。しかしながら、低温では二相に分離します。今回はAkaiKKR(machikaneyama)を利用して、この境界となる温度を求めてみます。

Pd-Rh-520.png

Fig.1: Pd-Rh二元系の合金状態図とAkaiKKR(machikaneyama)によって計算された固溶と二相共存の境界温度(紫:マフィンティン近似, 緑:原子球近似)



熱力学


全エネルギーの組成依存性が上に凸の形になる場合、定性的に二相分離が予想されます。境界温度を推定するためには、二相分離した状態と固溶した状態のギブスエネルギーの差がゼロになる条件を探せばよいことが分かります。

\begin{equation}
G = E + PV - TS
\end{equation}

まず、常圧のみを考えると P≒0 としても影響はほとんどありません。エネルギー E の項には、第一原理計算から得られる全エネルギーの他に格子振動の寄与などが考えられますが、二相分離状態と固溶状態の差は小さいと仮定して無視します。

エントロピーSについても配置のエントロピーのほかに格子振動の寄与などが考えられますが、配置のエントロピーのみを考えることにします。するとRh濃度が x のときの全エネルギーの差と、固溶体の配置のエントロピーは、以下の様になります。

\begin{equation}
\Delta E(x) = E_{\mathrm{Pd_{1-x}Rh_{x}}} - \{ (1-x)E_{\mathrm{Pd}} + x E_{\mathrm{Rh}} \} \\
S_m(x) = - k_B \{ (1-x)\ln (1-x) + x \ln (x) \}
\end{equation}

したがって求める温度は以下のようになります。

\begin{equation}
T(x) = \frac{\Delta E(x)}{S_m(x)}
\end{equation}

計算手法


AkaiKKR(machikaneyama)を用いてPd-Rh合金系の全エネルギーを計算しました。交換相関汎関数にはpbeを用いました。シェルスクリプトPdRh_sh.txtを用いて、組成と格子定数を変化させながら、各組成における最安定な格子定数とそのときの全エネルギーを決定しました。ポテンシャルの形状は、マフィンティン近似と原子球近似(ASA)の両方を試しました。

全エネルギーを計算する際に、状態密度の計算も行いました。端成分の状態密度に関してはecaljでも計算し、クロスチェックしました。

結果と議論


Fig.2-3に純粋なPdとRhの状態密度を示します。AkaiKKRで計算した結果とecaljで計算した結果が良く一致していることが分かります。

Pd-DOS.png
Fig.2: Pdの状態密度

Rh-DOS.png
Fig.3: Rhの状態密度


Fig.4にPdの体積と全エネルギーの関係をプロットしたものを示します。ゼロ気圧における体積V0とそのときの全エネルギーE0を得るためにBirch-Murnaghanの状態方程式にフィッティングしました。

\begin{equation}
E(V) = E_0 + \frac{9V_0B_0}{16}\left\lbrace \left[ \left( \frac{V_0}{V} \right)^{\frac{2}{3}} -1 \right]^3 B_0^\prime \\
+ \left[ \left( \frac{V_0}{V} \right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 -4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\rbrace
\end{equation}

PdRh_0.png
Fig.4: Pdの体積と全エネルギーの関係


フィッティングする体積の範囲はV0付近でフィッティング結果が良くなるように適切に選びます。

得られた全エネルギーから固溶と二相分離の境界の温度をプロットしたのがFig.1です。計算結果は、二元合金状態図集の状態図と比較してあります。Pd-Rh合金の計算ではASAの結果が実験結果を驚くほどよく再現しています。しかしながら、今回のような良い結果が得られるのは、どうやら周期表で同じ周期に隣接している元素同士の合金だけのようです。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR CPA 二相共存 状態密度 DOS 

AkaiKKRでウルツ鉱構造ZnO

AkaiKKR(machikaneyama)をもちいてAkaiKKRでルチル構造SnO2 その1その2ではルチル構造の計算をし、AkaiKKRで岩塩構造 BaO2では岩塩構造の計算をしました。今回はそれらに続いてウルツ鉱構造のZnOの計算を行います。

wZnO.png
Fig.1: ウルツ鉱構造のZnO



ウルツ鉱構造


Fig.1に示したのがウルツ鉱構造のZnOです。亜鉛原子を六方最密充填構造のように配置し、その四面体格子間位置のうち、半分のサイトを酸素が占めたような結晶構造をしています。この入力ファイルは、以下のようにしました。
四面体サイトのうち半分しか酸素が存在しないので、残りの格子間位置にも空孔をおくほうが精度が上がる可能性はありますが、今回はそのままにしてあります。

c------------------------------------------------------------
go data/ZnO
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 6.1415 , 1.602064 , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.5 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.035
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Zn 1 1 0.0 2
30 100
O 1 1 0.0 2
8 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
1/3a 2/3b 0c Zn
2/3a 1/3b 1/2c Zn
1/3a 2/3b 0.3819c O
2/3a 1/3b 0.8819c O
c------------------------------------------------------------


結果


Fig.2-3がZnOのバンド構造と状態密度です。やはり、バンドギャップが小さく出ていて、半導体なのか金属なのか微妙です。

wZnO-DOS.png
ZnO-band.png

Fig.2-3: ウルツ鉱構造ZnOの状態密度とバンド構造


フェルミエネルギー付近を拡大した計算を行うと(ewidth=0.8Ry)、一応バンドギャップがあるらしいことは確認できます。ただし、フェルミエネルギーが価電子帯の中にめり込んでしまっています。前回同様、この点は気にし無い事にします。

ZnO-band2.png

Fig.4: フェルミ準位付近を拡大したバンド構造


関連エントリ





    参考URL




    付録


    このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


    参考文献/使用機器




    フィードバック



    にほんブログ村 その他趣味ブログ 電子工作へ

     ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


    コメント・トラックバックも歓迎です。 ↓      


     ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR ウルツ鉱構造 ZnO 

AkaiKKRでルチル構造SnO2 その2

AkaiKKRでルチル構造SnO2 その1と同様にルチル構造のGeO2とTeO2の状態密度とバンド構造を計算しました。

002_20160710125630226.jpg
Fig.1: ルチル型結晶構造



ルチル構造半導体


AkaiKKRでルチル構造SnO2 その1では、ルチル構造を持つSnO2のバンド構造と状態密度の計算をしました。ルチル構造を持った化合物としては、他にGeO2等があります。また、TeO2もルチル構造に良く似た結晶構造です。そこで今回は、前回と同様にこれら2種類の物質のバンド構造と状態密度の計算を行いました。

入力ファイル


格子定数はSvane and Antoncik (1987)にあわせて以下の値を用いました。

SnO2GeO2TeO2
a (Å)4.737 4.3954.790
c/a0.6730.65050.787
u0.3070.3070.31
table.1: 格子パラメータ


原子番号はそれぞれ8O, 50Sn, 32Ge, 52Te です。
前回と同様に ewidth の選び方は難しいのですが、今回の二つの場合は、コアを含めずに収束させました。go計算の入力ファイルは、以下のようになりました。

c------------------------------------------------------------
go data/GeO2
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
st 8.305, 0.6505, , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.8 sra vwn nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.023
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Ge 1 1 0.0 2
32 100
O 1 1 0.0 2
8 100
c------------------------------------------------------------
c natm
6
c------------------------------------------------------------
c atmicx atmtyp
0.0a 0.0b 0.0c Ge
1/2a 1/2b 1/2c Ge
0.307a 0.307b 0.0c O
0.693a 0.693b 0.0c O
0.193a 0.807b 1/2c O
0.807a 0.193b 1/2c O
c------------------------------------------------------------


結果


Fig.2-3が GeO2の状態密度とバンド構造で、Fig.4-5がTeO2の結果です。どちらの結果もフェルミエネルギーが伝導帯に少しめり込んでしまっていますが、今は気にし無い事にします。

GeO2-DOS.png
GeO2-band-narrow.png
Fig.2-3: GeO2の状態密度とバンド構造


TeO2-DOS.png
TeO2-band-narrow.png
Fig.4-5: TeO2の状態密度とバンド構造


GeO2は、明らかに大きなバンドギャップが開いています。TeO2は、状態密度だけを見るとバンドギャップに重なりがあるようにも見えますが、バンド分散のほうを見るとどうやらバンドは開いているようです。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR ルチル構造  

AkaiKKRで点欠陥の形成エネルギー(未完)

Wang et al. (2004) (PDF)を参考に、AkaiKKR (machikaneyama)を用いて面心立方構造(fcc)のアルミニウムの点欠陥の生成エネルギーをスーパーセル法を用いて計算しました。
結果は、Wang et al. (2004) (PDF)の計算結果に対して、一桁程度の過大評価となってしまいました。


点欠陥の形成エネルギー


結晶中に点欠陥を作るために必要な欠陥の形成エネルギーは、スーパーセル法を用いた第一原理計算から計算することができます。
具体的には、まず、スーパーセルで完全結晶の全エネルギーを計算します(E0)。次にスーパーセルから1つの原子を取り除いた系の計算を行い、全エネルギー(E1)を求めます。スーパーセルの原子数がN個のとき、欠陥形成エネルギーは、以下の式から求めることができます(参考: Wang et al. (2004) (PDF))。
\begin{equation}
\Delta E_{f} = E_{1} - \frac{N-1}{N} E_{0}
\end{equation}

同様の計算は、スーパーセルではなくコヒーレントポテンシャル近似(CPA)でもできる可能性はあるのでしょうか?このような質問がAkaiKKR (machikaneyama)の掲示板に投稿されて・・・いましたが、現在は存在していないようです(#6678)。質問者の計算は、うまく行っておらず、形成エネルギーが一桁程度過大評価されているようです。

そこで今回は、AkaiKKR (machikaneyama)でもスーパーセル法を用いて点欠陥の形成エネルギーを計算してみます。

計算手法


Wang et al. (2004) (PDF)では、面心立方構造(fcc)のアルミニウムとニッケル、体心立方構造(bcc)のモリブデンとタンタルの点欠陥の形成エネルギーの計算が行われています。今回は、この中で面心立方構造のアルミニウムに関して計算を行います。スーパーセルのサイズは 2*2*2=32 原子としました。
Wang et al. (2004) (PDF)によると、交換相関汎関数はGGAよりもLDAのほうが良いであるとか、構造緩和はしないほうがむしろ良いだとか、色々議論があるようです。とりあえず今回は、LDA(mjw)で構造緩和もしない(というか大変なのでやりたくない)という方針で行きます。

c--------------------Al--------------------------------------
go data/SuperAlVc
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
sc 15.3 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.035
c------------------------------------------------------------
c ntyp
32
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Al1 1 1 0.0 2 0 100
Al2 1 1 0.0 2 13 100
Al3 1 1 0.0 2 13 100
Al4 1 1 0.0 2 13 100
Al5 1 1 0.0 2 13 100
Al6 1 1 0.0 2 13 100
Al7 1 1 0.0 2 13 100
Al8 1 1 0.0 2 13 100
Al9 1 1 0.0 2 13 100
Al10 1 1 0.0 2 13 100
Al11 1 1 0.0 2 13 100
Al12 1 1 0.0 2 13 100
Al13 1 1 0.0 2 13 100
Al14 1 1 0.0 2 13 100
Al15 1 1 0.0 2 13 100
Al16 1 1 0.0 2 13 100
Al17 1 1 0.0 2 13 100
Al18 1 1 0.0 2 13 100
Al19 1 1 0.0 2 13 100
Al20 1 1 0.0 2 13 100
Al21 1 1 0.0 2 13 100
Al22 1 1 0.0 2 13 100
Al23 1 1 0.0 2 13 100
Al24 1 1 0.0 2 13 100
Al25 1 1 0.0 2 13 100
Al26 1 1 0.0 2 13 100
Al27 1 1 0.0 2 13 100
Al28 1 1 0.0 2 13 100
Al29 1 1 0.0 2 13 100
Al30 1 1 0.0 2 13 100
Al31 1 1 0.0 2 13 100
Al32 1 1 0.0 2 13 100
c------------------------------------------------------------
c natm
32
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Al1
1/4 1/4 0 Al2
1/4 0 1/4 Al3
0 1/4 1/4 Al4

1/2 0 0 Al5
3/4 1/4 0 Al6
3/4 0 1/4 Al7
1/2 1/4 1/4 Al8

0 1/2 0 Al9
1/4 3/4 0 Al10
1/4 1/2 1/4 Al11
0 3/4 1/4 Al12

0 0 1/2 Al13
1/4 1/4 1/2 Al14
1/4 0 3/4 Al15
0 1/4 3/4 Al16

1/2 1/2 0 Al17
3/4 3/4 0 Al18
3/4 1/2 1/4 Al19
1/2 3/4 1/4 Al20

1/2 0 1/2 Al21
3/4 1/4 1/2 Al22
3/4 0 3/4 Al23
1/2 1/4 3/4 Al24

0 1/2 1/2 Al25
1/4 3/4 1/2 Al26
1/4 1/2 3/4 Al27
0 3/4 3/4 Al28

1/2 1/2 1/2 Al29
3/4 3/4 1/2 Al30
3/4 1/2 3/4 Al31
1/2 3/4 3/4 Al32
c------------------------------------------------------------


AkaiKKRでスーパーセル その1で書いたとおり、AkaiKKRでスーパーセルの計算を行うためには、それに適したパラメータをspecx.fに設定して再コンパイルする必要があります。計算するコンピュータのメモリが少ない場合、スワップ領域を使う必要があるかもしれません。今回はAkaiKKRとUbuntu 12.04 のスワップ領域で指定した下記のパラーメータをspecx.fに設定しました。

     & (natmmx=32, ncmpmx=32, msizmx=288, mxlmx=3, nk1x=500, nk3x=701,


結果と議論


面心立方構造のアルミニウムの点欠陥の形成エネルギーを計算するために、計算セルの中に32個のアルミニウム原子を置いた完全結晶の全エネルギー(E0)とスーパーセルからひとつの原子を点欠陥に置き換えたスーパーセルの全エネルギー(E1)の計算を行いました。得られた全エネルギーは、以下のようになりました。

E0 = -15482.440171667 (Ry)
E1 = -14998.335584355 (Ry)

よって点欠陥の生成エネルギーは
ΔEf = 0.2783319 (Ry) = 3.786906 (eV)
となりました。

この値はWang et al. (2004) (PDF)で報告されている 0.568 (eV) @ N=31, 0.511 (eV) @ N=108 とくらべて一桁程度の過大評価となってしまいました。したがって、AkaiKKRのCPA計算で点欠陥の生成エネルギーを過大評価してしまうのは、必ずしもCPAの問題ではないかもしれません。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR スーパーセル CPA 

AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ