AkaiKKRでPd-Rh二相共存領域

二元系の状態図には、全率固溶型や共融型などいくつかのパターンが存在します。Pd-Rhの二元系では、端成分が共に面心立方構造となっています。そのため高温では固溶体となります。しかしながら、低温では二相に分離します。今回はAkaiKKR(machikaneyama)を利用して、この境界となる温度を求めてみます。

Pd-Rh-520.png

Fig.1: Pd-Rh二元系の合金状態図とAkaiKKR(machikaneyama)によって計算された固溶と二相共存の境界温度(紫:マフィンティン近似, 緑:原子球近似)



熱力学


全エネルギーの組成依存性が上に凸の形になる場合、定性的に二相分離が予想されます。境界温度を推定するためには、二相分離した状態と固溶した状態のギブスエネルギーの差がゼロになる条件を探せばよいことが分かります。

\begin{equation}
G = E + PV - TS
\end{equation}

まず、常圧のみを考えると P≒0 としても影響はほとんどありません。エネルギー E の項には、第一原理計算から得られる全エネルギーの他に格子振動の寄与などが考えられますが、二相分離状態と固溶状態の差は小さいと仮定して無視します。

エントロピーSについても配置のエントロピーのほかに格子振動の寄与などが考えられますが、配置のエントロピーのみを考えることにします。するとRh濃度が x のときの全エネルギーの差と、固溶体の配置のエントロピーは、以下の様になります。

\begin{equation}
\Delta E(x) = E_{\mathrm{Pd_{1-x}Rh_{x}}} - \{ (1-x)E_{\mathrm{Pd}} + x E_{\mathrm{Rh}} \} \\
S_m(x) = - k_B \{ (1-x)\ln (1-x) + x \ln (x) \}
\end{equation}

したがって求める温度は以下のようになります。

\begin{equation}
T(x) = \frac{\Delta E(x)}{S_m(x)}
\end{equation}

計算手法


AkaiKKR(machikaneyama)を用いてPd-Rh合金系の全エネルギーを計算しました。交換相関汎関数にはpbeを用いました。シェルスクリプトPdRh_sh.txtを用いて、組成と格子定数を変化させながら、各組成における最安定な格子定数とそのときの全エネルギーを決定しました。ポテンシャルの形状は、マフィンティン近似と原子球近似(ASA)の両方を試しました。

全エネルギーを計算する際に、状態密度の計算も行いました。端成分の状態密度に関してはecaljでも計算し、クロスチェックしました。

結果と議論


Fig.2-3に純粋なPdとRhの状態密度を示します。AkaiKKRで計算した結果とecaljで計算した結果が良く一致していることが分かります。

Pd-DOS.png
Fig.2: Pdの状態密度

Rh-DOS.png
Fig.3: Rhの状態密度


Fig.4にPdの体積と全エネルギーの関係をプロットしたものを示します。ゼロ気圧における体積V0とそのときの全エネルギーE0を得るためにBirch-Murnaghanの状態方程式にフィッティングしました。

\begin{equation}
E(V) = E_0 + \frac{9V_0B_0}{16}\left\lbrace \left[ \left( \frac{V_0}{V} \right)^{\frac{2}{3}} -1 \right]^3 B_0^\prime \\
+ \left[ \left( \frac{V_0}{V} \right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 -4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\rbrace
\end{equation}

PdRh_0.png
Fig.4: Pdの体積と全エネルギーの関係


フィッティングする体積の範囲はV0付近でフィッティング結果が良くなるように適切に選びます。

得られた全エネルギーから固溶と二相分離の境界の温度をプロットしたのがFig.1です。計算結果は、二元合金状態図集の状態図と比較してあります。Pd-Rh合金の計算ではASAの結果が実験結果を驚くほどよく再現しています。しかしながら、今回のような良い結果が得られるのは、どうやら周期表で同じ周期に隣接している元素同士の合金だけのようです。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR CPA 二相共存 状態密度 DOS 

AkaiKKRで点欠陥の形成エネルギー(未完)

Wang et al. (2004) (PDF)を参考に、AkaiKKR (machikaneyama)を用いて面心立方構造(fcc)のアルミニウムの点欠陥の生成エネルギーをスーパーセル法を用いて計算しました。
結果は、Wang et al. (2004) (PDF)の計算結果に対して、一桁程度の過大評価となってしまいました。


点欠陥の形成エネルギー


結晶中に点欠陥を作るために必要な欠陥の形成エネルギーは、スーパーセル法を用いた第一原理計算から計算することができます。
具体的には、まず、スーパーセルで完全結晶の全エネルギーを計算します(E0)。次にスーパーセルから1つの原子を取り除いた系の計算を行い、全エネルギー(E1)を求めます。スーパーセルの原子数がN個のとき、欠陥形成エネルギーは、以下の式から求めることができます(参考: Wang et al. (2004) (PDF))。
\begin{equation}
\Delta E_{f} = E_{1} - \frac{N-1}{N} E_{0}
\end{equation}

同様の計算は、スーパーセルではなくコヒーレントポテンシャル近似(CPA)でもできる可能性はあるのでしょうか?このような質問がAkaiKKR (machikaneyama)の掲示板に投稿されて・・・いましたが、現在は存在していないようです(#6678)。質問者の計算は、うまく行っておらず、形成エネルギーが一桁程度過大評価されているようです。

そこで今回は、AkaiKKR (machikaneyama)でもスーパーセル法を用いて点欠陥の形成エネルギーを計算してみます。

計算手法


Wang et al. (2004) (PDF)では、面心立方構造(fcc)のアルミニウムとニッケル、体心立方構造(bcc)のモリブデンとタンタルの点欠陥の形成エネルギーの計算が行われています。今回は、この中で面心立方構造のアルミニウムに関して計算を行います。スーパーセルのサイズは 2*2*2=32 原子としました。
Wang et al. (2004) (PDF)によると、交換相関汎関数はGGAよりもLDAのほうが良いであるとか、構造緩和はしないほうがむしろ良いだとか、色々議論があるようです。とりあえず今回は、LDA(mjw)で構造緩和もしない(というか大変なのでやりたくない)という方針で行きます。

c--------------------Al--------------------------------------
go data/SuperAlVc
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
sc 15.3 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.035
c------------------------------------------------------------
c ntyp
32
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Al1 1 1 0.0 2 0 100
Al2 1 1 0.0 2 13 100
Al3 1 1 0.0 2 13 100
Al4 1 1 0.0 2 13 100
Al5 1 1 0.0 2 13 100
Al6 1 1 0.0 2 13 100
Al7 1 1 0.0 2 13 100
Al8 1 1 0.0 2 13 100
Al9 1 1 0.0 2 13 100
Al10 1 1 0.0 2 13 100
Al11 1 1 0.0 2 13 100
Al12 1 1 0.0 2 13 100
Al13 1 1 0.0 2 13 100
Al14 1 1 0.0 2 13 100
Al15 1 1 0.0 2 13 100
Al16 1 1 0.0 2 13 100
Al17 1 1 0.0 2 13 100
Al18 1 1 0.0 2 13 100
Al19 1 1 0.0 2 13 100
Al20 1 1 0.0 2 13 100
Al21 1 1 0.0 2 13 100
Al22 1 1 0.0 2 13 100
Al23 1 1 0.0 2 13 100
Al24 1 1 0.0 2 13 100
Al25 1 1 0.0 2 13 100
Al26 1 1 0.0 2 13 100
Al27 1 1 0.0 2 13 100
Al28 1 1 0.0 2 13 100
Al29 1 1 0.0 2 13 100
Al30 1 1 0.0 2 13 100
Al31 1 1 0.0 2 13 100
Al32 1 1 0.0 2 13 100
c------------------------------------------------------------
c natm
32
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Al1
1/4 1/4 0 Al2
1/4 0 1/4 Al3
0 1/4 1/4 Al4

1/2 0 0 Al5
3/4 1/4 0 Al6
3/4 0 1/4 Al7
1/2 1/4 1/4 Al8

0 1/2 0 Al9
1/4 3/4 0 Al10
1/4 1/2 1/4 Al11
0 3/4 1/4 Al12

0 0 1/2 Al13
1/4 1/4 1/2 Al14
1/4 0 3/4 Al15
0 1/4 3/4 Al16

1/2 1/2 0 Al17
3/4 3/4 0 Al18
3/4 1/2 1/4 Al19
1/2 3/4 1/4 Al20

1/2 0 1/2 Al21
3/4 1/4 1/2 Al22
3/4 0 3/4 Al23
1/2 1/4 3/4 Al24

0 1/2 1/2 Al25
1/4 3/4 1/2 Al26
1/4 1/2 3/4 Al27
0 3/4 3/4 Al28

1/2 1/2 1/2 Al29
3/4 3/4 1/2 Al30
3/4 1/2 3/4 Al31
1/2 3/4 3/4 Al32
c------------------------------------------------------------


AkaiKKRでスーパーセル その1で書いたとおり、AkaiKKRでスーパーセルの計算を行うためには、それに適したパラメータをspecx.fに設定して再コンパイルする必要があります。計算するコンピュータのメモリが少ない場合、スワップ領域を使う必要があるかもしれません。今回はAkaiKKRとUbuntu 12.04 のスワップ領域で指定した下記のパラーメータをspecx.fに設定しました。

     & (natmmx=32, ncmpmx=32, msizmx=288, mxlmx=3, nk1x=500, nk3x=701,


結果と議論


面心立方構造のアルミニウムの点欠陥の形成エネルギーを計算するために、計算セルの中に32個のアルミニウム原子を置いた完全結晶の全エネルギー(E0)とスーパーセルからひとつの原子を点欠陥に置き換えたスーパーセルの全エネルギー(E1)の計算を行いました。得られた全エネルギーは、以下のようになりました。

E0 = -15482.440171667 (Ry)
E1 = -14998.335584355 (Ry)

よって点欠陥の生成エネルギーは
ΔEf = 0.2783319 (Ry) = 3.786906 (eV)
となりました。

この値はWang et al. (2004) (PDF)で報告されている 0.568 (eV) @ N=31, 0.511 (eV) @ N=108 とくらべて一桁程度の過大評価となってしまいました。したがって、AkaiKKRのCPA計算で点欠陥の生成エネルギーを過大評価してしまうのは、必ずしもCPAの問題ではないかもしれません。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR スーパーセル CPA 

AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

AkaiKKRでB(N)-dopedダイヤモンド

AkaiKKR(machikaneyama)のコヒーレントポテンシャル近似(CPA)を用いて、ホウ素や窒素をドープしたダイヤモンドの電子構造を計算しました。
得られた状態密度は、状態密度の形状が変わらず、フェルミ準位の位置が変わるだけであるという、リジッドバンド模型でよく近似できることが分かりました。

diamond_201603202355181f7.png
Fig.1: ダイヤモンド(赤)、ホウ素ドープダイヤモンド(緑)、窒素ドープダイヤモンド(青)の状態密度



ホウ素(窒素)ドープダイヤモンド


AkaiKKRでダイヤモンド型構造半導体で計算したとおり、ダイヤモンドは大きなバンドギャップを持つ半導体(あるいは絶縁体)です。しかしながらダイヤモンドを構成する炭素原子の一部(5%程度)をホウ素や窒素に置き換えると、金属的なフェルミ準位に有限の状態を持つ電子構造になります。AkaiKKR(machikaneyama)を用いたバンド計算は、すでにKobashi (2014a), Kobashi (2014b)によって行われています。今回は、同様の計算を行ってみます。

計算手法


AkaiKKRを用いて、炭素原子の5%をホウ素、または、窒素に置き換えた結晶の状態密度を計算しました。これまでの計算と比較して特筆すべきテクニックは特にありませんが、バンドギャップの過小評価をできるだけ避けるために、空孔を入れて、原子球近似(ASA)を用いました。また、格子定数は不純物のドープに対して変化しないと仮定して a = 6.74 Bohr としました。
置換不純物は、コヒーレントポテンシャル近似(CPA)を用いて計算しました。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
dos data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.67 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 20 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


結果


結果をFig.1に示します。
赤で示したのが通常のダイヤモンドの状態密度です。フェルミ準位はバンドギャップの中にあります。緑と青で示したのが、それぞれホウ素と窒素を5%置換したダイヤモンドの状態密度です。これらは、状態密度の形状がほとんど変化せず、フェルミ準位の位置がずれているだけだと分かります。
これは、ホウ素(窒素)は、炭素と比べてか電子の数が1個少ない(多い)からです。半導体では、このように不純物をドープした際にバンド構造がほとんど変わらず、価電子数の差に応じてフェルミ準位が変化するだけという事が多いようです。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR CPA 状態密度 DOS 半導体 

AkaiKKRとecaljでCuGaTe2 その1

第一原理計算パッケージには、それぞれ特徴があり、計算したい物質によって適切に使い分ける必要に迫られることがあります。AkaiKKR(machikaneyama)は不規則系に適しており、ecaljは半導体のバンドギャップを求めるのに適しています。

例えば、不規則を含む半導体の計算をAkaiKKRで行いたいと考えたとき、不規則を含まない端成分の計算をecaljの結果と比較しておくことは有用です。今回はCuGaTe2を対象として、AkaiKKRで状態密度の計算をおこないました。

CuGaTe2DOS.png
Fig.1: CuGaTe2の状態密度



AkaiKKRとecaljの長所


AkaiKKR(machikaneyama)は、コヒーレントポテンシャル近似(CPA)を導入することによって、合金などの不規則性を扱うことが可能であるという特徴があります。
またecaljはGW近似を用いて、半導体のバンドギャップの見積もりを局所密度近似(LDA)から改善できる長所があります。

他にもさまざまな第一原理計算パッケージが、それぞれ特有の長所を持っています。このため、しばしば複数のコードでの計算結果を比較するということが起こります。

今回と次回では、AkaiKKRの掲示板に投稿された CuGaTe2 のバンドギャップをこれら二つのコードで計算し、バンドギャップと状態密度の比較を行います。今回はAkaiKKRでの計算です。

計算手法


入力ファイルはCannot reproduce the bandgap of CuGaTe2に投稿されているものとほとんど同じですが、少しだけ変更してあります。一つ目の変更点は、スピン軌道相互作用を(計算が重いので)はずした事。二つ目はewidthを小さくしたことです。

c--------------------CuGaTe2---------------------------------
go data/cugate2
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bct 11.5388 1.992 1 90 90 90
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 0.7 sra pbe nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 500 0.015
c------------------------------------------------------------
c ntyp
5
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 0 0.0 2 29 100
Ga 1 0 0.0 2 31 100
Te 1 0 0.0 2 52 100
Es1 1 0 0.0 0 0 100
Es2 1 0 0.0 0 0 100
c------------------------------------------------------------
c natm
16
c------------------------------------------------------------
c atmicx atmtyp
0.23703x 1/4y 1/8z Te
0.76297x 3/4y 1/8z Te
3/4x 0.23703y 3/8z Te
1/4x 0.76297y 3/8z Te
1/2x 1/2y 0.0z Ga
1/2x 0.0y 1/4z Ga
0.0x 0.0y 0.0z Cu
0.0x 1/2y 1/4z Cu
c
0.75x 1/4y 1/8z Es1
0.25x 3/4y 1/8z Es1
3/4x 0.75y 3/8z Es1
1/4x 0.25y 3/8z Es1
c
0.0x 0.0y 0.25z Es2
1/2x 1/2y 0.25z Es2
0.0x 1/2y 0.0z Es2
1/2x 0.0y 0.0z Es2
c------------------------------------------------------------


結果


Fig.1に状態密度を示します。
AkaiKKRでの状態密度やバンド構造(ブロッホスペクトル関数)のエネルギー分解能は source/specx.f の msex で指定することが可能で、デフォルトでは msex=201 となっています。したがって、状態密度を計算するために ewidth = 0.8 Ry とした場合の分解能は 4 mRy 程度になります。その結果、状態密度の図だけを見ると、バンドギャップが存在するか否かが微妙です。

AkaiKKRでバンドギャップの測り方では、バンドギャップを決める場合、状態密度から値を読むよりも、バンド構造から見るほうが良さそうであると書きました。CuGaTe2は、伝導帯の上端(CBM)と価電子帯の下端(VBM)が共にΓ点に存在する直接遷移型の半導体であるとの事なので、その付近のバンド構造をプロットしたのがFig.2です。

CuGaTe2band.png
Fig.2: Γ点周辺のCuGaTe2のバンド構造


GaAsの場合と異なり、CBMにフェルミ準位(というか計算上のエネルギー基準点)が張り付いてしまっていますが、電子の数を足し上げるときの数値計算上の誤差と思うので、いまは気にしないことにします。

ローレンツ関数へのフィッティングは、あまりきれいにいかなかったので、目視で読むと、バンドギャップの大きさはおよそ 30 mRy 程度でしょうか。換算すると 0.4 eV 程度となるので、Cannot reproduce the bandgap of CuGaTe2に書かれている通り 1 eV 程度存在するはずのバンドギャップから見ると過小評価です。

AkaiKKRに限らず密度汎関数理論(DFT)に局所密度近似(LDA)や一般化勾配近似(GGA)を組み合わせた第一原理計算パッケージは、バンドギャップを過小評価してしまう問題が広く知られています。
ecaljで利用できるGW近似は、この問題に対する回答のひとつです。AkaiKKRとecaljでCuGaTe2 その2では、ecaljを用いてCuGaTe2の状態密度とバンドギャップを計算します。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR CPA ecalj 半導体 バンドギャップ バンド構造 分散関係 GW近似 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ