千石ガイガーキットのバックグラウンド経時変化

千石ガイガーキット組み立てのガイガーカウンターは、時間と共に感度が下がっていくように感じられました。
そこで、電源投入後から放電に従ってどのようにバックグラウンド計数値が変化するかを1分おきに測定しました。

その結果、電源投入から15分程度までの感度の変化は充分小さく、キャリレーションさえ行えば、ある程度の定量的な測定にも耐えそうだという結論に至りました。

001_20110614090106.png


時間と共に計数が減る?


千石ガイガーキット組み立てで組み立てた、千石電商で発売されているCK1026を使用したガイガー・ガウンターキットは、電源ボタンを押すと高電圧がコンデンサに充電され、その高電圧が放電されてしまうまでの間に放射線量をカウントすることが出来ます。

これを実際に使ってみると、電源投入直後は元気良く放射線量をカウントしているのですが、時間がたつにつれて感度が下がるように感じられました。

まんぼうのつれづれ日記さんの千石電商のCK1026ガイガーカウンタキットを組み立てたの記事によると

色々測定してみましたが、高圧電源が放電して電圧が下がっていと、カウント数がどんどん少なくなっていきます。計測する場合は、ボタンを押してからのタイミングをとらないときちんと比較できません。
ボタン押した直後3分で計測すると、大体105cpm位になってます。


との事です。

そこで、本エントリでは電源投入直後からのカウント数を1分間各で測定し、時間に応じてどのように計数が変化するかを確認しました。

測定方法


カウンタのリセットボタンを押した後、充電開始スイッチを1秒程度押してバックグラウンドの放射線測定を開始しました。
カウント数の記録は、ノートPC付属のカメラで1分おきにカウンタを写真撮影しました。


snap0000.jpg

snap0001.jpg

snap0002.jpg
fig.1-3: 測定中のガイガーカウンター


結果と考察


以下に測定結果を示します。


001_20110614090106.png
fig.4: 測定結果


横軸は時間で単位は分(minute)です。
縦軸は、1分あたりの計数(CPM:counts per minute)です。

電源投入直後から、15分程度までは、多少の減少傾向はありますが、ほぼ一定の計数を保っていることが分かります。ただし、万歩計カウンターは多少のパルスの取りこぼしをするようなので、実際の計数はより大きい可能性があります。
これに対して20分頃には計数が急速に減少してしまい、実用範囲で無くなることが読み取れます。

CK1026に限らない話ですが、ガイガー計数管の感度は、アノード電圧に依存しますが、電圧に対して比例して感度が変化するわけでは無く、規定の電圧範囲ではほぼ一定の感度になります。
この規定の電圧範囲をプラトー電圧と呼びます。

CK1026データシートによるとおよそ800Vから1000Vくらいまでがプラトー電圧のようです。


2011y06m14d_075308781.png
fig.5: CK1026のプラトー電圧


測定結果fig.4から、電源投入後およそ20分ぐらいでアノード電圧が700V程度まで下がってしまうのではないかと推定がつきます。

また、CK1026のデータシートからはバックグラウンドのカウント数は、標準値で60CPM、最大値で100CPMということになっています。
しかし、今回のエントリの測定からは、バックグラウンドが110CPM前後とやや高めの値を示しています。

原因はよく分かりません。回路自体の性能に起因する誤カウント、ガイガー管の経年劣化、本当にバックグラウンドの放射線量が高いなど、可能性なら色々考えられると思います。いずれにせよ、実用的なガイガーカウンターとして使うには標準線源を用意してキャリブレーションする必要があるでしょう。

元気が無いように感じる理由


主観的な解釈になりますが、ガイガーカウンターの電源投入後からのカウント数が見る見る減っていくような気がするのは、ブザーの『カリカリ音』が次第に弱くなっていくからでは無いかと思いました。

データシートから引用したfig.5のプラトー電圧のグラフには"Count / Minute vs. Anode Voltage"のほかに"Pulse Amplitude vs. Anode Voltage"のグラフも描かれています。
これは、放射線が入射したときの発生パルスの強さとアノード電圧の関係を表したものだと思います。
この図から、ガイガー管の計数感度と比較して、出力パルスの大きさはアノード電圧につよく依存することが読み取れます。パルス電圧が高くなると、その分ブザーを駆動するパルス幅が大きくなるので、体感的にはブザーの『カリカリ音』が大きくなります。
電源投入直後から、次第に元気が無くなっていくように感じるのは、主にこの影響ではないかと思います。

結論


千石ガイガーカウンターキットを電源投入からずっと観察していると、次第に元気が無くなっていくように感じます。
しかしながら、それは主にブザーの音量が小さくなっていくことが原因で、ガイガー管の感度自体は、電源投入15分後程度まで、ほぼ一定のまま変化しません。

電源投入から15分以降では、急速に感度が下がってしまうため連続しようのためには再充電が必要です。

バックグラウンドがデータシートの値よりもかなり高く出ているので、定量的な測定が行いたい場合は、標準試料となる線源でキャリブレーションが必要となるでしょう。

関連エントリ




参考URL




付録


このエントリで使用した測定データを添付します。


参考文献/使用機器



フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ガイガー管 CK1026 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ