AkaiKKRで反強磁性fcc鉄

AkaiKKR(machikaneyama)を用いて、強磁性、非磁性、簡単な反強磁性状態のfcc鉄の全エネルギーを計算しました。その結果、低温におけるfcc鉄は何らかの磁性を持つであろうことがわかりました。

001_20150616101545812.png

Fig.1: fcc鉄の第一種反強磁性。異なる向きのスピンをもつ原子がL10型構造のように配置されている。FCC鉄の磁気構造より



第一種反強磁性fcc鉄


鉄は室温で体心立方構造(body-centered cubic; bcc)を取る強磁性体です。そして910℃以上で面心立方構造(face-centered cubic; fcc)へと相転移します。bcc鉄のキュリー温度は770℃であるので、高温下におけるfcc鉄も常磁性です。

これに対して、もし室温でfcc構造の鉄が存在した場合、どのような磁性を持つのかは興味深い問題です。スピン密度はを持つ複雑な反強磁性であるというのが現在の理解であるようですが(参考: FCC鉄の磁気構造)、差し当たりAkaiKKRで反強磁性クロムのときと同様に、Fig.1のような簡単な反強磁性を仮定して第一原理計算を行います。
これはCuAu合金などにみられるL10構造と同じ形をしています。結晶系は、とりあえず簡単のため立方晶(cubic)であると仮定します。

AkaiKKRの入力ファイル


AkaiKKRの入力ファイルはブラべ格子と基底の組み合わせで表されます(参考: AkaiKKRのブラベ格子)。L10構造は、直感的に言えば、底心立方格子(base-centered cubic; bsc)の(0 0 0)と(1/2 0 1/2)に原子を置いた結晶構造です。ですが、当然ながら底心立方格子というブラべ格子は存在しない(単純正方格子(simple tetragonal)と等価)ので指定できません。もちろん単純正方として入力ファイルを作ってもよいのですが、格子定数fcc構造と異なってしまいややこしいのでc/a=1, b/a=1とした底心斜方格子(bso)で代用することにします。

入力ファイルの一例は以下のようになりました。

c-------------------------fccFe------------------------------
go data/fccFeAFMI
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bso 6.9 , 1 , 1 , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra gga91 mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.023
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Fe1 1 1 0.0 2 26 100
Fe2 1 1 0.0 2 26 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Fe1
1/2 0 1/2 Fe2
c------------------------------------------------------------


この反強磁性状態のものと強磁性、非磁性(スピン分極なし)の格子定数aを6.0-7.4 Bohrの範囲で全エネルギーを求めました。

結果と議論


全エネルギーと各原子の磁気モーメントの大きさをそれぞれFig.2-3に示します。

002_20150616101404f34.png
Fig.2: 全エネルギー

003_20150616101403636.png
Fig.3: 磁気モーメント


全エネルギーの比較からfcc構造における鉄は非磁性状態よりも反強磁性状態の方が安定であるという結果が得られました。しかしながら、最安定なのは強磁性状態という事になってしまいました。
このあたりはAkaiKKRで反強磁性クロムのときと同様にbzqltyが低いのか(参考: AkaiKKRでFeCoの磁気モーメントと格子定数)、整合反強磁性を仮定したためなのか良く分かりません。

また、各原子の局所スピンモーメントの大きさを比較したところ、格子定数を小さくしていったとき、反強磁性の方がスピンモーメントがじわじわと変化し、強磁性の方がスパッと変化をするようです。

関連エントリ




参考URL




付録


このエントリで使用したAkaiKKRのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 反強磁性 強磁性 面心立方構造 fcc L10構造 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPAPIC強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースecalj定電流スイッチング回路PDS5022DOS半導体乱数シェルスクリプトレベルシフトHP6632Aブレッドボード分散関係温度解析トランジスタ技術R6452A可変抵抗I2Cセミナー確率論反強磁性非線形方程式ソルバ絶縁偏微分方程式バンド構造熱設計数値積分バンドギャップカオスA/DコンバータフォトカプラシュミットトリガGW近似LEDLM358ISO-I2C三端子レギュレータ数値微分サーボ直流動作点解析カレントミラーマフィンティン半径TL431PC817C発振回路74HC4053USBアナログスイッチbzqltyFFTチョッパアンプ2ちゃんねる補間量子力学開発環境電子負荷標準ロジックパラメトリック解析アセンブラ基本並進ベクトルブラべ格子単振り子BSchLDAイジング模型繰り返しMaximaキュリー温度位相図状態方程式失敗談スピン軌道相互作用六方最密充填構造相対論FET抵抗コバルト不規則合金TLP621ewidthGGAQSGWgfortranランダムウォークラプラス方程式スイッチト・キャパシタcygwin熱伝導SMPスレーターポーリング曲線三角波格子比熱LM555条件分岐TLP552MCUNE555UPSTLP521QNAPマントルテスタFXA-7020ZR過渡解析詰め回路ガイガー管ダイヤモンド自動計測Writer509データロガー固有値問題VESTAスーパーセルOpenMP差し込みグラフ平均場近似起電力awk仮想結晶近似VCAubuntufsolveブラウン運動熱力学第一原理計算井戸型ポテンシャルシュレディンガー方程式面心立方構造fccウィグナーザイツ胞interp12SC1815L10構造非線型方程式ソルバFSMキーボードTeX結晶磁気異方性初期値OPA2277化学反応等高線ジバニャン方程式ヒストグラム確率論三次元フィルタRealforcePGAフェルミ面正規分布固定スピンモーメント全エネルギースワップ領域リジッドバンド模型edeltquantumESPRESSOルチル構造岩塩構造二相共存ZnOウルツ鉱構造BaOフォノンデバイ模型multiplotgnuplotc/aノコギリ波合金クーロン散乱ハーフメタル半金属CapSenseマンデルブロ集合マテリアルデザインSICGimpCK1026MAS830L円周率トランスPIC16F785凡例線種シンボルLMC662ヒストグラム不規則局所モーメント文字列疎行列TS-110TS-112Excel直流解析等価回路モデル入出力トラックボールPC軸ラベルAACircuitP-10フラクタル境界条件連立一次方程式Ubuntuifortパラメータ・モデルspecx.f関数フィッティング最小二乗法Crank-Nicolson法陰解法日本語EAGLEMBEグラフの分割負帰還安定性ナイキスト線図熱拡散方程式HiLAPW両対数グラフ片対数グラフ縮退

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ