AkaiKKRで反強磁性fcc鉄

AkaiKKR(machikaneyama)を用いて、強磁性、非磁性、簡単な反強磁性状態のfcc鉄の全エネルギーを計算しました。その結果、低温におけるfcc鉄は何らかの磁性を持つであろうことがわかりました。

001_20150616101545812.png

Fig.1: fcc鉄の第一種反強磁性。異なる向きのスピンをもつ原子がL10型構造のように配置されている。FCC鉄の磁気構造より



第一種反強磁性fcc鉄


鉄は室温で体心立方構造(body-centered cubic; bcc)を取る強磁性体です。そして910℃以上で面心立方構造(face-centered cubic; fcc)へと相転移します。bcc鉄のキュリー温度は770℃であるので、高温下におけるfcc鉄も常磁性です。

これに対して、もし室温でfcc構造の鉄が存在した場合、どのような磁性を持つのかは興味深い問題です。スピン密度はを持つ複雑な反強磁性であるというのが現在の理解であるようですが(参考: FCC鉄の磁気構造)、差し当たりAkaiKKRで反強磁性クロムのときと同様に、Fig.1のような簡単な反強磁性を仮定して第一原理計算を行います。
これはCuAu合金などにみられるL10構造と同じ形をしています。結晶系は、とりあえず簡単のため立方晶(cubic)であると仮定します。

AkaiKKRの入力ファイル


AkaiKKRの入力ファイルはブラべ格子と基底の組み合わせで表されます(参考: AkaiKKRのブラベ格子)。L10構造は、直感的に言えば、底心立方格子(base-centered cubic; bsc)の(0 0 0)と(1/2 0 1/2)に原子を置いた結晶構造です。ですが、当然ながら底心立方格子というブラべ格子は存在しない(単純正方格子(simple tetragonal)と等価)ので指定できません。もちろん単純正方として入力ファイルを作ってもよいのですが、格子定数fcc構造と異なってしまいややこしいのでc/a=1, b/a=1とした底心斜方格子(bso)で代用することにします。

入力ファイルの一例は以下のようになりました。

c-------------------------fccFe------------------------------
go data/fccFeAFMI
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bso 6.9 , 1 , 1 , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra gga91 mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.023
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Fe1 1 1 0.0 2 26 100
Fe2 1 1 0.0 2 26 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Fe1
1/2 0 1/2 Fe2
c------------------------------------------------------------


この反強磁性状態のものと強磁性、非磁性(スピン分極なし)の格子定数aを6.0-7.4 Bohrの範囲で全エネルギーを求めました。

結果と議論


全エネルギーと各原子の磁気モーメントの大きさをそれぞれFig.2-3に示します。

002_20150616101404f34.png
Fig.2: 全エネルギー

003_20150616101403636.png
Fig.3: 磁気モーメント


全エネルギーの比較からfcc構造における鉄は非磁性状態よりも反強磁性状態の方が安定であるという結果が得られました。しかしながら、最安定なのは強磁性状態という事になってしまいました。
このあたりはAkaiKKRで反強磁性クロムのときと同様にbzqltyが低いのか(参考: AkaiKKRでFeCoの磁気モーメントと格子定数)、整合反強磁性を仮定したためなのか良く分かりません。

また、各原子の局所スピンモーメントの大きさを比較したところ、格子定数を小さくしていったとき、反強磁性の方がスピンモーメントがじわじわと変化し、強磁性の方がスパッと変化をするようです。

関連エントリ




参考URL




付録


このエントリで使用したAkaiKKRのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 反強磁性 強磁性 面心立方構造 fcc L10構造 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性PICCPAOPアンプecalj常微分方程式モンテカルロ解析状態密度odeトランジスタインターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632Aトランジスタ技術ブレッドボード可変抵抗温度解析I2CR6452A反強磁性バンドギャップ確率論数値積分セミナー偏微分方程式絶縁バンド構造熱設計非線形方程式ソルバシュミットトリガISO-I2CLEDマフィンティン半径GW近似三端子レギュレータLM358A/DコンバータカオスフォトカプラUSBPC817C直流動作点解析サーボ74HC4053アナログスイッチTL431発振回路カレントミラー数値微分単振り子量子力学開発環境補間2ちゃんねるチョッパアンプbzqltyFFT電子負荷アセンブラBSchLDA標準ロジックパラメトリック解析ブラべ格子基本並進ベクトルイジング模型VESTAVCAMaximaSMPewidthGGA仮想結晶近似FET位相図キュリー温度QSGWTLP621ランダムウォーク不規則合金gfortranコバルト相対論失敗談抵抗状態方程式スレーターポーリング曲線ラプラス方程式スピン軌道相互作用スイッチト・キャパシタ六方最密充填構造熱伝導繰り返しcygwinTLP552条件分岐TLP521NE555LM555マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測Writer509UPSQNAPダイヤモンドデータロガー格子比熱熱力学平均場近似OpenMPブラウン運動スーパーセルUbuntuフェルミ面差し込みグラフubuntuハーフメタルfsolve最適化第一原理計算固有値問題シュレディンガー方程式最小値awk起電力井戸型ポテンシャルCIFxcrysden最大値結晶磁気異方性PGATeX非線型方程式ソルバ2SC1815等高線OPA2277面心立方構造初期値FSM正規分布interp1ウィグナーザイツ胞フィルタfccL10構造合金BaOウルツ鉱構造CapSense岩塩構造ルチル構造ZnO二相共存磁気モーメント不純物問題電荷密度重積分SICスワップ領域リジッドバンド模型multiplotジバニャン方程式gnuplotc/a全エネルギー半金属デバイ模型edeltquantumESPRESSOノコギリ波フォノン固定スピンモーメントspecx.f等価回路モデル円周率パラメータ・モデルヒストグラム不規則局所モーメントTS-112TS-110直流解析PCExcelシンボルGimp日本語最小二乗法フラクタルマンデルブロ集合縮退クーロン散乱三次元ゼーベック係数キーボード入出力関数フィッティング文字列疎行列Realforceトラックボール線種EAGLE連立一次方程式MBECrank-Nicolson法AACircuit負帰還安定性ナイキスト線図マテリアルデザインP-10化学反応ifort境界条件陰解法熱拡散方程式MAS830LCK1026グラフの分割軸ラベル凡例片対数グラフトランスHiLAPW両対数グラフLMC662PIC16F785ヒストグラム確率論

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ