Scilabで二重積分

Scilabを利用すると1変数の数値積分が簡単に計算できます。

\begin{equation}
\int_{x_0}^{x_1}f(x)\mathrm{d}x
\end{equation}

このブログでも数値積分タグにいくつかの例を見つけることができます。しかしながら、2変数の数値積分はこれまで行ってきませんでした。

\begin{equation}
\int\int f(x,y) \mathrm{d}x\mathrm{d}y
\end{equation}

Scilabには二重積分を計算することが可能な int2d が存在します。今回は高校数学の美しい物語で解析的に解かれている二重積分を数値的に計算してみます。


積分範囲が長方形領域の場合


積分範囲が長方形の領域の場合、すなわち以下のような式で表すことができる場合は、簡単に数値積分できます。

\begin{equation}
\int_{x_0}^{x_1}\int_{y_0}^{y_1}f(x,y)\mathrm{d}x\mathrm{d}y
\end{equation}

Scilabの int2d では長方形領域を2つの三角形のパッチワークとして与えます。
積分範囲を int2d に渡すために行列XとYを用意します。それぞれ2つの三角形の頂点のx座標とy座標を与えます。

\begin{equation}
X =
\begin{pmatrix}
x_{0} & x_{0} \\
x_{1} & x_{1} \\
x_{1} & x_{0} \\
\end{pmatrix},
Y =
\begin{pmatrix}
y_{0} & y_{0} \\
y_{0} & y_{1} \\
y_{1} & y_{1} \\
\end{pmatrix}
\end{equation}

001_20170423145553b2b.png
Fig.1: Scilabのint2dへの積分範囲の与え方


実際に以下の積分を計算して見ます。

\begin{equation}
\int_{0}^{\pi}\int_{0}^{R}x^4 \sin(y)\mathrm{d}x\mathrm{d}y
\end{equation}

clear;

r = 1;

// *** 積分する関数の定義 ***
function z = func(x,y)
z = (x .^ 4) * sin(y)
endfunction
// 積分範囲
x0 = 0; x1 = r;
y0 = 0; y1 = %pi;

// *** 二重積分 ***
X = [x0, x0;
x1, x1;
x1, x0];
Y = [y0, y0;
y0, y1;
y1, y1];
// 数値解
I = int2d(X, Y, func)
// 解析解
A = 2*(r^5)/5


数値化解と解析解が同じ値になることが確認できます。

積分範囲が三角形の組み合わせで表せる場合


積分範囲が長方形の場合は2つの三角形の組み合わせで表現されますが、より複雑な形状の場合も任意の個数の三角形の組み合わせで表現できるはずです。今回は逆に簡単になってしまいますが、1個の三角形で表現できる例を計算します。

\begin{equation}
\int \int_D xy^2 \mathrm{d}x\mathrm{y}
\end{equation}

jusekibun.png
Fig.2: 積分領域Dが三角形ひとつ分の例


積分領域が三角形ひとつ分なので、与える行列は3行1列になります。

\begin{equation}
X =
\begin{pmatrix}
x_{0} \\
x_{1} \\
x_{1} \\
\end{pmatrix},
Y =
\begin{pmatrix}
y_{1} \\
y_{0} \\
y_{1} \\
\end{pmatrix}
\end{equation}

この計算を行うScilabスクリプトは以下のようになります。

clear;

// *** 積分する関数の定義 ***
function z = func(x,y)
z = x .* (y .^ 2)
endfunction

// *** 二重積分 ***
X = [0;
1;
1];
Y = [1;
0;
1];
// 数値解
I = int2d(X, Y, func)
// 解析解
A = 3/20


このスクリプトも数値解と解析解が同じに値になることが分かります。

同様にしてN個の三角形の組み合わせで表現される積分範囲の場合3行N列の行列で指定することができます。

更に複雑な積分領域の場合


どんなに複雑な積分領域の形状であっても三角形のパッチワークで表現できるはずですが、現実的には大変です。そこでOctaveの精義―フリーの高機能数値計算ツールを使いこなすで紹介されている方法を試してみましたが、現状うまく行っていません。上手く行っていませんがとりあえず方法だけは紹介します。
具体的にはScilabの論理演算で条件分岐の考え方を使って積分領域外では値がゼロになるように被積分関数の定義を行います。

\begin{equation}
\int\int_D -\frac{1}{(2x + y + 1)^2}\mathrm{d}x\mathrm{d}y
\end{equation}

jusekibun2.png
Fig.3: 複雑な積分領域の例


clear;

// *** 積分する関数の定義 ***
function z = func(x,y)
region = y >= x .^ 2
z = - 1 ./ ((2 * x + y + 1) .^ 2) .* region
endfunction

// *** 二重積分 ***
X = [0;
1;
1];
Y = [0;
0;
1];
// 数値解
I = int2d(X, Y, func)
// 解析解
A = (1/3) * log(4) - 1/2


原理的にはこのスクリプトでよいはずですが、実際には正しく計算してくれません。Scilab 6.0ではエラーで停止します。Scilab 5.5.2ではそれっぽい値を返しますが、解析解の値とはかなりずれた値となっており、不正確です。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 数値積分 重積分 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性PICCPAOPアンプecalj常微分方程式モンテカルロ解析状態密度odeトランジスタインターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632Aトランジスタ技術ブレッドボード可変抵抗温度解析I2CR6452A反強磁性バンドギャップ確率論数値積分セミナー偏微分方程式絶縁バンド構造熱設計非線形方程式ソルバシュミットトリガISO-I2CLEDマフィンティン半径GW近似三端子レギュレータLM358A/DコンバータカオスフォトカプラUSBPC817C直流動作点解析サーボ74HC4053アナログスイッチTL431発振回路カレントミラー数値微分単振り子量子力学開発環境補間2ちゃんねるチョッパアンプbzqltyFFT電子負荷アセンブラBSchLDA標準ロジックパラメトリック解析ブラべ格子基本並進ベクトルイジング模型VESTAVCAMaximaSMPewidthGGA仮想結晶近似FET位相図キュリー温度QSGWTLP621ランダムウォーク不規則合金gfortranコバルト相対論失敗談抵抗状態方程式スレーターポーリング曲線ラプラス方程式スピン軌道相互作用スイッチト・キャパシタ六方最密充填構造熱伝導繰り返しcygwinTLP552条件分岐TLP521NE555LM555マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測Writer509UPSQNAPダイヤモンドデータロガー格子比熱熱力学平均場近似OpenMPブラウン運動スーパーセルUbuntuフェルミ面差し込みグラフubuntuハーフメタルfsolve最適化第一原理計算固有値問題シュレディンガー方程式最小値awk起電力井戸型ポテンシャルCIFxcrysden最大値結晶磁気異方性PGATeX非線型方程式ソルバ2SC1815等高線OPA2277面心立方構造初期値FSM正規分布interp1ウィグナーザイツ胞フィルタfccL10構造合金BaOウルツ鉱構造CapSense岩塩構造ルチル構造ZnO二相共存磁気モーメント不純物問題電荷密度重積分SICスワップ領域リジッドバンド模型multiplotジバニャン方程式gnuplotc/a全エネルギー半金属デバイ模型edeltquantumESPRESSOノコギリ波フォノン固定スピンモーメントspecx.f等価回路モデル円周率パラメータ・モデルヒストグラム不規則局所モーメントTS-112TS-110直流解析PCExcelシンボルGimp日本語最小二乗法フラクタルマンデルブロ集合縮退クーロン散乱三次元ゼーベック係数キーボード入出力関数フィッティング文字列疎行列Realforceトラックボール線種EAGLE連立一次方程式MBECrank-Nicolson法AACircuit負帰還安定性ナイキスト線図マテリアルデザインP-10化学反応ifort境界条件陰解法熱拡散方程式MAS830LCK1026グラフの分割軸ラベル凡例片対数グラフトランスHiLAPW両対数グラフLMC662PIC16F785ヒストグラム確率論

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ