Scilabで連立一次方程式

中学校で習った連立一次方程式は行列を使うと

Ax = b

と表すことができます。

Scilabを利用すれば
x = A \ b

と書くだけで解くことが出来ます。


連立一次方程式


数値計算の常識には以下の様にあります。

A = [aij]は正則なn次正方行列,b=[bi]はn次元のベクトルで,両者が与えられたとき

Ax=b

を満たすn次元ベクトルx=[xi]を計算する問題は,線形計算の最も基本的な問題である.


またぞろ難しげな書き方となっていますが、すこぶる簡単に言うとつるかめ算は行列を使うと簡単に解けますよという意味です。

中学校の数学で見たように連立一次方程式とは以下の様なものです。

ax+by=\xi

cx+dy=\eta

この問題自体は、中学校で解き方を習うものでありますし、勉強熱心な家庭の場合、小学生のうちにつるかめ算としてならう子供もいる訳で、簡単に解くことが出来ます。

物理数学の直観的方法には以下の様にあります。

線形代数という分野は,もともとそれほど難しくない内容のことを,上手い表現方法を用いたことで数学の中で地位を占めたといった性格を持っており,内容それ自体よりも表記法のほうが独創的であったといえる。


先ほどの連立方程式も

A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}

\mathbf{x} = \left( \begin{array}{c} x \\ y end{pmatrix} \right)

\mathbf{b} = \begin{array}{c} \xi \\ \eta end{pmatrix}


の様におくと下記の様に行列で表すことができるようになります。

Ax=b

一度この様な行列で表現してしまえばこの方程式の解となるベクトルxは、逆行列A-1を利用して

x = A-1b

と表すことができ、逆行列A-1を求めるルーチンワークさえ出来るようになれば、連立する方程式の数がたくさんに増えても簡単に計算できるようになる。

・・・というのが、線形代数の謳い文句です。

連立一次方程式の数値計算


連立する方程式の数が2つや3つの場合はともかく、10とか100とか大きな値になると手計算で解くのは大変になるので数値計算をするわけですが、数値計算の常識などの数値計算の教科書を読むと、逆行列を計算してから解を計算するというような方法は、実際には効率的でないとのことです。

逆行列を計算する方法として偏微分方程式の数値解法入門ではガウス-ジョルダンの消去法が紹介されています。しかしながら数値計算の常識によるとガウス-ジョルダンの消去法の計算時間はO(n8)のオーダーが必要であるのに対して、逆行列を計算する事無く連立一次方程式を解くことの出来るLU分解を用いればO(n8/3)のオーダーに高速化できるとあります。

また、偏微分方程式の数値解法入門ではガウス-ジョルダンの消去法の他にガウス-ザイデルの反復法も紹介されています。

他の二つは連立一次方程式を式変形して解を求めるアプローチであるのに対して、反復法は解の近似値を代入して誤差が少なくなるように計算を繰り返し、解の近似値を収束させる方法を取ります。

Scilabでの連立一次方程式の解法


Scilabで学ぶわかりやすい数値計算法にはガウス-ジョルダンの消去法とガウス-ザイデルの反復法を含む幾つかのスクリプトが解説されています。このスクリプト自体はScilabで学ぶわかりやすい数値計算法のサポートページで公開されています。

しかし、実を言うと、Scilabを使って連立一次方程式を解くためのもっとも簡単な(そして恐らくもっとも高速な)方法は左行列除算を用いる方法です。Scilabで学ぶわかりやすい数値計算法のスクリプトに倣って行列Aとベクトルbをプロンプトから入力させるようにしたプログラムが以下の通りになります。

clear;

// *** 連立一次方程式の係数入力 ***
// 行列のサイズの入力
printf("n = ?\n"); n = mscanf("%d");
printf("\n")
// A の要素の入力
for i = 1:n
for j = 1:n
printf("a%d%d = ?\n",i,j); A(i,j) = mscanf("%f");
printf("\n");
end
end
// b の要素の入力
for i = 1:n
printf("b%d = ?\n",i); b(i) = mscanf("%f");
printf("\n");
end

// *** 連立一次方程式の計算 ***
A \ b


見ての通り係数を入力させる部分がほとんどを占めて、実際に連立一次方程式を解いている部分は

A \ b


の一行のみです。

参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器






フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 連立一次方程式 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ