Scilabで連立一次方程式

中学校で習った連立一次方程式は行列を使うと

Ax = b

と表すことができます。

Scilabを利用すれば
x = A \ b

と書くだけで解くことが出来ます。


連立一次方程式


数値計算の常識には以下の様にあります。

A = [aij]は正則なn次正方行列,b=[bi]はn次元のベクトルで,両者が与えられたとき

Ax=b

を満たすn次元ベクトルx=[xi]を計算する問題は,線形計算の最も基本的な問題である.


またぞろ難しげな書き方となっていますが、すこぶる簡単に言うとつるかめ算は行列を使うと簡単に解けますよという意味です。

中学校の数学で見たように連立一次方程式とは以下の様なものです。

ax+by=\xi

cx+dy=\eta

この問題自体は、中学校で解き方を習うものでありますし、勉強熱心な家庭の場合、小学生のうちにつるかめ算としてならう子供もいる訳で、簡単に解くことが出来ます。

物理数学の直観的方法には以下の様にあります。

線形代数という分野は,もともとそれほど難しくない内容のことを,上手い表現方法を用いたことで数学の中で地位を占めたといった性格を持っており,内容それ自体よりも表記法のほうが独創的であったといえる。


先ほどの連立方程式も

A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}

\mathbf{x} = \left( \begin{array}{c} x \\ y end{pmatrix} \right)

\mathbf{b} = \begin{array}{c} \xi \\ \eta end{pmatrix}


の様におくと下記の様に行列で表すことができるようになります。

Ax=b

一度この様な行列で表現してしまえばこの方程式の解となるベクトルxは、逆行列A-1を利用して

x = A-1b

と表すことができ、逆行列A-1を求めるルーチンワークさえ出来るようになれば、連立する方程式の数がたくさんに増えても簡単に計算できるようになる。

・・・というのが、線形代数の謳い文句です。

連立一次方程式の数値計算


連立する方程式の数が2つや3つの場合はともかく、10とか100とか大きな値になると手計算で解くのは大変になるので数値計算をするわけですが、数値計算の常識などの数値計算の教科書を読むと、逆行列を計算してから解を計算するというような方法は、実際には効率的でないとのことです。

逆行列を計算する方法として偏微分方程式の数値解法入門ではガウス-ジョルダンの消去法が紹介されています。しかしながら数値計算の常識によるとガウス-ジョルダンの消去法の計算時間はO(n8)のオーダーが必要であるのに対して、逆行列を計算する事無く連立一次方程式を解くことの出来るLU分解を用いればO(n8/3)のオーダーに高速化できるとあります。

また、偏微分方程式の数値解法入門ではガウス-ジョルダンの消去法の他にガウス-ザイデルの反復法も紹介されています。

他の二つは連立一次方程式を式変形して解を求めるアプローチであるのに対して、反復法は解の近似値を代入して誤差が少なくなるように計算を繰り返し、解の近似値を収束させる方法を取ります。

Scilabでの連立一次方程式の解法


Scilabで学ぶわかりやすい数値計算法にはガウス-ジョルダンの消去法とガウス-ザイデルの反復法を含む幾つかのスクリプトが解説されています。このスクリプト自体はScilabで学ぶわかりやすい数値計算法のサポートページで公開されています。

しかし、実を言うと、Scilabを使って連立一次方程式を解くためのもっとも簡単な(そして恐らくもっとも高速な)方法は左行列除算を用いる方法です。Scilabで学ぶわかりやすい数値計算法のスクリプトに倣って行列Aとベクトルbをプロンプトから入力させるようにしたプログラムが以下の通りになります。

clear;

// *** 連立一次方程式の係数入力 ***
// 行列のサイズの入力
printf("n = ?\n"); n = mscanf("%d");
printf("\n")
// A の要素の入力
for i = 1:n
for j = 1:n
printf("a%d%d = ?\n",i,j); A(i,j) = mscanf("%f");
printf("\n");
end
end
// b の要素の入力
for i = 1:n
printf("b%d = ?\n",i); b(i) = mscanf("%f");
printf("\n");
end

// *** 連立一次方程式の計算 ***
A \ b


見ての通り係数を入力させる部分がほとんどを占めて、実際に連立一次方程式を解いている部分は

A \ b


の一行のみです。

参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器






フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 連立一次方程式 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPAPIC強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースecalj定電流スイッチング回路PDS5022DOS半導体乱数シェルスクリプトレベルシフトHP6632Aブレッドボード分散関係温度解析トランジスタ技術R6452A可変抵抗I2Cセミナー確率論反強磁性非線形方程式ソルバ絶縁偏微分方程式バンド構造熱設計数値積分バンドギャップカオスA/DコンバータフォトカプラシュミットトリガGW近似LEDLM358ISO-I2C三端子レギュレータ数値微分サーボ直流動作点解析カレントミラーマフィンティン半径TL431PC817C発振回路74HC4053USBアナログスイッチbzqltyFFTチョッパアンプ2ちゃんねる補間量子力学開発環境電子負荷標準ロジックパラメトリック解析アセンブラ基本並進ベクトルブラべ格子単振り子BSchLDAイジング模型繰り返しMaximaキュリー温度位相図状態方程式失敗談スピン軌道相互作用六方最密充填構造相対論FET抵抗コバルト不規則合金TLP621ewidthGGAQSGWgfortranランダムウォークラプラス方程式スイッチト・キャパシタcygwin熱伝導SMPスレーターポーリング曲線三角波格子比熱LM555条件分岐TLP552MCUNE555UPSTLP521QNAPマントルテスタFXA-7020ZR過渡解析詰め回路ガイガー管ダイヤモンド自動計測Writer509データロガー固有値問題VESTAスーパーセルOpenMP差し込みグラフ平均場近似起電力awk仮想結晶近似VCAubuntufsolveブラウン運動熱力学第一原理計算井戸型ポテンシャルシュレディンガー方程式面心立方構造fccウィグナーザイツ胞interp12SC1815L10構造非線型方程式ソルバFSMキーボードTeX結晶磁気異方性初期値OPA2277化学反応等高線ジバニャン方程式ヒストグラム確率論三次元フィルタRealforcePGAフェルミ面正規分布固定スピンモーメント全エネルギースワップ領域リジッドバンド模型edeltquantumESPRESSOルチル構造岩塩構造二相共存ZnOウルツ鉱構造BaOフォノンデバイ模型multiplotgnuplotc/aノコギリ波合金クーロン散乱ハーフメタル半金属CapSenseマンデルブロ集合マテリアルデザインSICGimpCK1026MAS830L円周率トランスPIC16F785凡例線種シンボルLMC662ヒストグラム不規則局所モーメント文字列疎行列TS-110TS-112Excel直流解析等価回路モデル入出力トラックボールPC軸ラベルAACircuitP-10フラクタル境界条件連立一次方程式Ubuntuifortパラメータ・モデルspecx.f関数フィッティング最小二乗法Crank-Nicolson法陰解法日本語EAGLEMBEグラフの分割負帰還安定性ナイキスト線図熱拡散方程式HiLAPW両対数グラフ片対数グラフ縮退

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ