Scilabで連立一次方程式

中学校で習った連立一次方程式は行列を使うと

Ax = b

と表すことができます。

Scilabを利用すれば
x = A \ b

と書くだけで解くことが出来ます。


連立一次方程式


数値計算の常識には以下の様にあります。

A = [aij]は正則なn次正方行列,b=[bi]はn次元のベクトルで,両者が与えられたとき

Ax=b

を満たすn次元ベクトルx=[xi]を計算する問題は,線形計算の最も基本的な問題である.


またぞろ難しげな書き方となっていますが、すこぶる簡単に言うとつるかめ算は行列を使うと簡単に解けますよという意味です。

中学校の数学で見たように連立一次方程式とは以下の様なものです。

ax+by=\xi

cx+dy=\eta

この問題自体は、中学校で解き方を習うものでありますし、勉強熱心な家庭の場合、小学生のうちにつるかめ算としてならう子供もいる訳で、簡単に解くことが出来ます。

物理数学の直観的方法には以下の様にあります。

線形代数という分野は,もともとそれほど難しくない内容のことを,上手い表現方法を用いたことで数学の中で地位を占めたといった性格を持っており,内容それ自体よりも表記法のほうが独創的であったといえる。


先ほどの連立方程式も

A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}

\mathbf{x} = \left( \begin{array}{c} x \\ y end{pmatrix} \right)

\mathbf{b} = \begin{array}{c} \xi \\ \eta end{pmatrix}


の様におくと下記の様に行列で表すことができるようになります。

Ax=b

一度この様な行列で表現してしまえばこの方程式の解となるベクトルxは、逆行列A-1を利用して

x = A-1b

と表すことができ、逆行列A-1を求めるルーチンワークさえ出来るようになれば、連立する方程式の数がたくさんに増えても簡単に計算できるようになる。

・・・というのが、線形代数の謳い文句です。

連立一次方程式の数値計算


連立する方程式の数が2つや3つの場合はともかく、10とか100とか大きな値になると手計算で解くのは大変になるので数値計算をするわけですが、数値計算の常識などの数値計算の教科書を読むと、逆行列を計算してから解を計算するというような方法は、実際には効率的でないとのことです。

逆行列を計算する方法として偏微分方程式の数値解法入門ではガウス-ジョルダンの消去法が紹介されています。しかしながら数値計算の常識によるとガウス-ジョルダンの消去法の計算時間はO(n8)のオーダーが必要であるのに対して、逆行列を計算する事無く連立一次方程式を解くことの出来るLU分解を用いればO(n8/3)のオーダーに高速化できるとあります。

また、偏微分方程式の数値解法入門ではガウス-ジョルダンの消去法の他にガウス-ザイデルの反復法も紹介されています。

他の二つは連立一次方程式を式変形して解を求めるアプローチであるのに対して、反復法は解の近似値を代入して誤差が少なくなるように計算を繰り返し、解の近似値を収束させる方法を取ります。

Scilabでの連立一次方程式の解法


Scilabで学ぶわかりやすい数値計算法にはガウス-ジョルダンの消去法とガウス-ザイデルの反復法を含む幾つかのスクリプトが解説されています。このスクリプト自体はScilabで学ぶわかりやすい数値計算法のサポートページで公開されています。

しかし、実を言うと、Scilabを使って連立一次方程式を解くためのもっとも簡単な(そして恐らくもっとも高速な)方法は左行列除算を用いる方法です。Scilabで学ぶわかりやすい数値計算法のスクリプトに倣って行列Aとベクトルbをプロンプトから入力させるようにしたプログラムが以下の通りになります。

clear;

// *** 連立一次方程式の係数入力 ***
// 行列のサイズの入力
printf("n = ?\n"); n = mscanf("%d");
printf("\n")
// A の要素の入力
for i = 1:n
for j = 1:n
printf("a%d%d = ?\n",i,j); A(i,j) = mscanf("%f");
printf("\n");
end
end
// b の要素の入力
for i = 1:n
printf("b%d = ?\n",i); b(i) = mscanf("%f");
printf("\n");
end

// *** 連立一次方程式の計算 ***
A \ b


見ての通り係数を入力させる部分がほとんどを占めて、実際に連立一次方程式を解いている部分は

A \ b


の一行のみです。

参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器






フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 連立一次方程式 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ