AkaiKKRでコバルトの結晶磁気異方性

AkaiKKRでは、結晶格子の指定に基本ベクトルを利用することができます。このようにしておくと、結晶格子を簡単に回転させたり歪ませたりする事ができます。
今回は、結晶を回転させる例として六方最密充填構造(hcp)のコバルトの結晶磁気異方性を調べます。AkaiKKRでは、スピン軌道相互作用を含む相対論計算(srals)を行うと、磁化の向きをz軸方向にとるようです。そこで結晶(と同時に磁化の向き)を回転させたときに全エネルギーがどのように変化するかから磁化容易軸を探しました。


SRALS.png
Fig.1: 全エネルギーとx軸周りの回転角度の関係。θ=0度でc軸とz軸が平行となり、θ=90度で直行する。


結果は、磁化の向きがc軸方向と平衡になったときに全エネルギーが最小となりました。この事はコバルトの磁化容易軸がc軸であるという実験事実と調和的となりました。この方法が結晶磁気異方性を調べるために妥当な方法なのかは良く分かりませんが、少なくとも結晶を回転させることはできました。


結晶の基本ベクトルと回転


AkaiKKR(machikaneyama)では結晶構造の指定にブラベ格子と基本構造の組み合わせを利用します。ブラベ格子の指定方法には、キーワードを使う方法(AkaiKKRのブラベ格子)と基本ベクトルを直接指定する方法(AkaiKKRの基本並進ベクトル その1その2)があります。

基本ベクトルは、その名前のとおりベクトルです。AkaiKKRは基本ベクトルの成分を直交座標系で表現します。
AkaiKKRの基本並進ベクトル その2では、六方最密充填構造(hcp)コバルトを、直交座標系におけるz軸を中心に反時計回りに30度回転させた場合のファイルを作成しました。

より一般的に、ベクトルは回転行列をかけることによって任意の角度に回転させることができます。
例えばベクトルa0=(ax0, ay0, az0)をx軸の周りにθだけ回転させるときの回転行列は以下のようになります。

matrix001.png

これを縦ベクトルで成分表示したa0ベクトルにかけると

\begin{equation*}\begin{pmatrix}a_x \\a_y \\a_z\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 \\0 & \cos\theta & -\sin\theta \\0  \sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}a_{x0} \\a_{y0} \\a_{z0}\end{pmatrix}\end{equation*}

同様にb0ベクトルc0ベクトルも回転させると、各成分は以下のようになります。

ax = ax0
ay = ay0cosθ - az0sinθ
az = ay0sinθ + az0cosθ

bx = bx0
by = by0cosθ - bz0sinθ
bz = by0sinθ + bz0cosθ

cx = cx0
cy = cy0cosθ - cz0sinθ
cz = cy0sinθ + cz0cosθ

コバルトの結晶磁気異方性


強磁性体の自発磁化の方向は、結晶の特定の方向に向きやすい性質があります。磁化が向きやすい方向を磁化容易軸、向きにくい方向を磁化困難軸とよびます。hcp構造の強磁性金属であるコバルトは、結晶のc軸方向に磁化容易軸を持っていることが知られています。

AkaiKKRでは相対論の効果を取り入れるのに、スピン軌道相互作用を含まないスカラー相対論計算(sra)とスピン軌道相互作用まで含むフルの相対論(srals)の両方が可能です(AkaiKKRで鉛の相対論計算)。結晶磁気異方性の主たる起源としてはスピン軌道相互作用が挙げられるということですが(磁気異方性(Wikipedia))、AkaiKKRでスピン軌道相互作用の計算をすると、スピン量子化軸は、直交座標系のz軸方向にとられるようです。

そこでスピン軌道相互作用を含む相対論の計算を、hcpコバルトのc軸の方向を変えながら行うことで、全エネルギー最小の条件から磁化容易軸の方向が決まるのではないかと考えました。(ただしこの考え方が正しいのかは良く分かりません。)

計算手法


基本ベクトルをx軸の周りに0度から90度まで10度ごとに回転させた入力ファイルをスカラー相対論(sra)とスピン軌道相互作用まで含めた相対論(srals)の両方で計算しました。

以下に示すのが、入力ファイルのテンプレートです。

c----------------------Co------------------------------------
go data/rotCo_SRALS_DEGREE
c------------------------------------------------------------
c brvtyp
aux
AX AY AZ
BX BY BZ
CX CY CZ
4.74
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.4 srals gga91 mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


上記入力ファイルのテンプレートから、c軸の向きを変化させた入力ファイルを作成しセルフコンシステント計算を実行するシェルスクリプトがrotation_sh.txtです。

結果と議論


予想通りスカラー相対論の計算に関しては、回転をさせても全エネルギーに変化は見られませんでした。一方でスピン軌道相互作用を考慮に入れたフル相対論の結果は冒頭のFig.1に示したような角度依存性が見られました。θ=0度で全エネルギーが最小となり、これは結晶のc軸と直交座標系のz軸が平行になるときに対応します。すなわち、c軸方向に磁化の向きをとったという意味です。逆にθ=90度のときに全エネルギーが最大になり、これは磁化の向きがab面方向にあるときです。
実験的に知られている磁化容易軸はc軸方向なので、計算結果は実験事実と調和的であるといえます。

ただし、今回はコバルトだけに触れますが、体心立方構造(bcc)の鉄や面心立法構造(fcc)のニッケルについて同様の計算を行うと、結果は微妙な感じです。なので、この方法が結晶磁気異方性を調べるために妥当な方法なのかは確信が持てません。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 強磁性 コバルト 結晶磁気異方性 基本並進ベクトル 相対論 スピン軌道相互作用 六方最密充填構造 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ