アバランシェ・モード弛張発振器

折角デジタルオシロスコープを購入したので、LTspiceで解析できない回路の実験をして見ましょう。以下の回路は黒田徹著はじめてのトランジスタ回路設計の87ページよりアバランシェ・モード弛張発振器です。




この発振回路は、トランジスタのエミッタ接合のブレークダウンを利用しています。このためLTspiceではシミュレーションできません。また、この回路で使ったトランジスタは破壊されるため、他の回路に再利用することは出来ません。

out1とout2をACカップリングで見たのが以下です。

CH1(赤):out1 1V/div
CH2(黄):out2 1V/div
100us/div





デジタルオシロらしくシングルトリガで過渡領域を表示してみました。
DCカップリングで、CH1とCH2のGNDは同じ位置にあわせてあります。

CH1(赤):out1 2V/div
CH2(黄):out2 2V/div
250us/div





発振周波数は、以下のように表されます。





とはいえ、Vz,VpおよびΔVは、R2とトランジスタの特性に依存するうえ、周波数の安定性もよくないようです。

tag: トランジスタ 発振回路 2SC1815 PDS5022 

ウィーン・ブリッジ型正弦波発振回路によるシグナルジェネレータ

秋月オシロPDS5022Sレビューで表示している正弦波はウィーン・ブリッジ型正弦波発振回路で生成しました。

画面の赤い方(黄色の方はLTspiceでオールパス・フィルタのオールパスフィルタででつくりました)



実はこの発振回路、ずいぶん前に作ったんですがコレを機にケースに入れました。




回路図は以下




周波数を可変するために、コンデンサの切り替えをロータリースイッチで、抵抗値の変更を2連ボリュームで行います。発振周波数は15Hzぐらいから150kHzぐらいです。
トランジスタ技術SPECIAL増刊「OPアンプによる実用回路設計」P273を参考に作りました。かなりいい加減に作ったので、波形は相当ひずんでいます。

とはいえ、適当に遊ぶには十分かなぁ・・・とおもっています。
ちなみに正弦波発振回路がほしいと思っている人は、素直にMAX038精密波形発生キット(ファンクションジェネレータキット)DDS(ダイレクト・デジタルシンセサイザー)キットをオススメします。

最も低周波のときをLTspiceでシミュレーション。波形が安定するまで、かなりかかります。





tag: OPアンプ LTspice 発振回路 

LTspiceで非安定マルチバイブレータ

回路シミュレータをダウンロードしてみたら、比較的すぐに試してみたくなる回路にトランジスタを用いた非安定マルチバイブレータ(unstable-multivivrator)があります。

しかしながら、LTspiceでデフォルトのNPNトランジスタモデルをそのまま使って初期条件を指定せずに過渡解析をすると発振を開始してくれません。






ポイントはいかの二つ。
1.トランジスタモデルは2N2222をつかう。
2.ショック電圧として.icを使って適当な初期電圧を与える。

2.の代わりに抵抗をアンバランスさせても発振を開始します。たとえば、R1=R2=1kとなっているところをR1=1k,R2=1.01kのようにします。






回路シミュレータは、こういったところが厳密な点が長所でもあり短所でもありますね。

tag: LTspice 発振回路 

LTspiceでリング発振器

タイトルはジョークですといいたいところですが、シミュレータにかけてみるまで気づかなかったので笑えません。今日の話は昨日の早押しボタンの裏話です。






まずは上の回路を見てください。昨日アップロードした回路図とそっくりですがどこが違うかお分かりでしょうか。
昨日の回路(正しい回路)を再びあげますと以下のようになります。




分かりにくいかもしれませんが、昨日の回路図は今日の回路図で言うところのInvQからダイオードD1を通して、プレイヤーからの入力段であるU4のNANDへ帰還をしています。
それに対して、今日上げた回路はQの出力を反転させたものを帰還しています。

RS-FFの2つの出力QとInvQが単純にお互いを論理反転した関係にあるのならばどちらの回路を採用したとしても結果は同じになります。
しかし、今日の回路は早押しボタンとしては不合格となります。

2枚目にあげたグラフを見てください。これはプレイヤーがボタンを押している状態から1us後にリセット信号を入力したものです。
InvQは素直にリセット信号に従っていますが、Qは発振しています。
これは、U1,U3,U4がリング発振器を構成してしまっているからです。

RS-FFの入力にはS(セット)とR(リセット)がともにアクティブになる禁止入力状態が存在します。RS-FFの2つの出力端子QとInvQは論理の正負以外にも入力におけるSとRのどちらを優先するかという違いがあります。
RS-FFを使う場合はSとRのどちらの信号を優先するのかを意識した上で禁止入力状態について考える必要があります。

なお、74HCシリーズのLTspiceモデルはYahoo!のLTspiceユーザーグループの物を利用させていただきました。

tag: LTspice 発振回路 

LTSpiceでクワドラチャ正弦波発振回路

ウイーンブリッジ型やクワドラチャ型といった正帰還を使う正弦波発振回路が発振する条件として、外部からのトリガ信号が必要です。実際の回路ではOPアンプの内部雑音や電源投入時の過渡現象が勝手にトリガ信号となるのですが、シミュレータ上ではそのままではうまく発振してくれません。

今回はトリガ信号の代わりにコンデンサに初期電圧を与える方法で発振を開始させて見ます。




初期電圧を与える方法としては.ICというSPICE directiveを利用します。.ICは過渡解析で初期値を与える命令です。

.IC V(ノード番号)=初期値

今回はC1に1Vの初期電圧を与えました。C1の端子のノードにstartというラベルをつけたので

.IC V(start)=1V

となります。




参考文献


tag: LTspice 発振回路 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ