Scilabでガウス型波束の散乱

Scilabを用いて初期波動関数がガウス型をしている波束が、ポテンシャルの谷によって散乱される様子をシミュレーションしました。

001.gif

Fig.1: ガウス型波束がポテンシャルの谷間によって散乱される様子を表したアニメーション。赤が波動関数の絶対値、緑が波動関数の実部を表す。青はポテンシャルの形状。



偏微分方程式


ねがてぃぶろぐでは微分方程式による物理現象のモデル化(PDF)で紹介されている常微分方程式をScilabで計算してきました。
次のテーマである波束の運動の問題は、時間微分だけの常微分方程式ではなく、時間と空間の両方の微分を含む偏微分方程式です。

ScilabやOctaveには偏微分方程式を解くための特別な関数は用意されていません。そこで、偏微分方程式を解くためには微分を差分に置き換えた計算が必要になります。Scilabで一次元井戸型ポテンシャルScilabで規則ポテンシャルと縮退では位置の微分であるエネルギー演算子を含むハミルトニアンを行列で表すことによって、固有値問題を解くための命令であるspecを利用することにより計算しました。

今回はScilabで一次元井戸型ポテンシャルと同様にハミルトニアンを行列であらわし、常微分方程式ソルバodeと組み合わせることにより、時間に依存するシュレディンガー方程式を解いてガウス型波束が散乱される様子をシミュレーションします。


ガウス型波束の運動


シッフの量子力学の本(上巻 下巻)によるとx軸の正の方向に運動量を持つ波束の波動関数は以下のように表されます。

\psi(x) = \frac{1}{\sqrt[4]{2 \pi (\Delta x)^2}} \exp\left(- \frac{(x-\langle x \rangle)^2}{4(\Delta x)^2}+\frac{i\langle p \rangle}{\hbar}x \right)

今回は、このガウス型波束を初期値に持つ波動関数がポテンシャルの谷に散乱される様子をScilabを用いてシミュレーションします。


時間に依存するシュレディンガー方程式


時間に依存するシュレディンガー方程式は、以下の様に表されます。

i \hbar \frac{\partial \psi (x,t)}{\partial t} = \left(- \frac{\hbar}{2m}\frac{\partial^2}{\partial x^2} + V(x) \right)\psi(x,t)

時間に依存しないシュレディンガー方程式の場合と同様に

\hbar = 1, m = \frac{1}{2}

とおくと、ハミルトニアンHは以下のようにかけます。

H = - \frac{\partial^2}{\partial x^2} + V(x)

この段階で時間に依存するシュレディンガー方程式は以下のように書くことが出来ます。

i\frac{\partial \psi}{\partial t} = H \psi

ここまでくればScilabの常微分方程式ソルバodeで解けることが分かります。
dψ/dt = ...の形にすると

\frac{\partial \psi}{\partial t} = -i H \psi

となり、これが今回の解くべき方程式となります。

微分方程式による物理現象のモデル化(PDF)によるとOctaveの常微分方程式ソルバであるlsodeは複素数に対応していないとのことですが、Scilabのodeは複素数に対応しているので、今回はodeを利用してシュレディンガー方程式を解きます。


疎行列


Scilabで一次元井戸型ポテンシャルで書いたとおり、ハミルトニアンを行列として書き下すと、以下のようにほとんどの成分がゼロとなります。

\begin{eqnarray*} H &=& - \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \\ &=& \left( \begin{array}{ccccccc} \frac{2}{h^2} + v_1 & -\frac{1}{h^2} & 0 & \hdots & & \hdots & 0 \\ -\frac{1}{h^2} & \frac{2}{h^2} + v_2 & -\frac{1}{h^2} & 0 & \hdots & & \vdots \\ 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_3 & -\frac{1}{h^2} & 0 & \hdots & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_{n-2} & -\frac{1}{h^2} & 0 \\ \vdots &  & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_{n-1} & -\frac{1}{h^2} \\ 0 & \hdots &  & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_n \end{array} \right) \end{eqnarray*}

このようにゼロでない要素が全体の中でごくわずかしかない行列を疎行列と呼びます。Scilabでは疎行列を扱う特別なデータ型があり、普通に定義した行列に対して

sp = sparse(X);


とすることによって疎行列へ変換することが出来ます。(参考:sparse)

今回の計算のハミルトニアンのようにゼロとなる要素が多い場合は、疎行列型へ変換することにより計算速度が劇的に速くなります。


数値計算


微分方程式による物理現象のモデル化(PDF)のように100stepごとに700ステップまで表示するScilabのプログラムがschiff-gv_sce.txtです。

clear;

vw = 0.064; // ポテンシャルの幅
vh = - (70.7 * %pi) ^ 2; // ポテンシャルの深さ
dim = 500; // 空間の分割数
h = 2.0 / dim; // 空間の刻み幅

// *** 位置ベクトル ***
X = linspace(-1,1,dim + 1);

// *** ハミルトニアンの定義 ***
// エネルギー演算子
vd = 2 / h ^ 2;
vdt = - 1 / h ^ 2;
SD = diag(vdt * ones(1,dim),1);
D = diag(vd * ones(1,dim + 1));
H = SD + D + SD.';
// ポテンシャル
V = zeros(H);
for i = 1:dim + 1 do
if abs(X(i)) < vw / 2 then
V(i,i) = vh;
end
end
// 全ハミルトニアン
H = sparse(H + V); // 疎行列へ変換するほうが実行速度が速い

// *** 常微分方程式の定義 ***
function dphi = schiff(t,phi)
dphi = - %i * H * phi;
endfunction

// *** 波束の初期設定 ***
xe = - 0.3; // 初期波束の位置の期待値(波束の中心位置)
dx = 0.035; // 初期波束の空間的広がり
pe = 50 * %pi; // 初期波束の運動量の期待値
phi0 = zeros(dim + 1,1);
for k = 1:dim + 1 do
// 初期波束
phi0(k) = exp(-(X(k) - xe) ^ 2 / (4 * dx ^ 2) + %i * pe * X(k)) ..
/ (2 * %pi * (dx) ^ 2) ^ 0.25;
end

// *** 時間刻みの設定 ***
dt = h ^ 2 / 4;
nstep = 700;
itvl = 100;
tf = dt * itvl;
T = [0:dt:tf];

// *** プロット ***
// ポテンシャルのプロット
subplot(3,3,1);
plot(X,diag(V));
// 目盛りを非表示にする
g = gca();
g.axes_visible = 'off';
zoom_rect([-0.5,-5,0.5,5]);
// 初期値のプロット
subplot(3,3,2);
plot(X,diag(V)); // ポテンシャルのプロット
plot(X,real(phi0),'-g'); // 波動関数の実部のプロット
plot(X,abs(phi0),'-r'); // 波動関数の絶対値のプロット
// ステップ数を表示
xstring(0.1,3,"step = 0");
// 目盛りを非表示にする
g = gca();
g.axes_visible = 'off';
zoom_rect([-0.5,-5,0.5,5]);

for k = 1:nstep/itvl do
// 微分方程式の数値解
phi = ode(phi0,0,T,schiff);
// ポテンシャルと波動関数のプロット
subplot(3,3,k + 2);
plot(X,diag(V)); // ポテンシャルのプロット
plot(X,real(phi(:,itvl)),'-g'); // 波動関数の実部のプロット
plot(X,abs(phi(:,itvl)),'-r'); // 波動関数の絶対値のプロット
// ステップ数を表示
stepnum = string(k * itvl);
xstring(0.1,3,strcat(["step = ",stepnum]));
// 目盛りを非表示にする
g = gca();
g.axes_visible = 'off';
zoom_rect([-0.5,-5,0.5,5]);
// 最後の波動関数を次の初期値に設定
phi0 = phi(:,itvl);
end


Fig.1のGIFアニメーションはschiff-gv-gif_sce.txtで作成したGIF画像をGimpやImagemagickで結合したものです。
Scilabの計算結果をGIFアニメーションにする方法はのちのち別のエントリにまとめようと思っています。

GIF動画に関連する情報は以下のリストにあります。


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab ode 常微分方程式 偏微分方程式 疎行列 量子力学 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ