Scilabで熱拡散方程式 その3 (陰解法)

Scilabで熱拡散方程式 その1 (陽解法)Scilabで熱拡散方程式 その2 (無次元化)では陽解法で偏微分方程式を解く方法を書くと同時に、時間と空間の刻み幅を自由に選べないという問題点を指摘しました。今回はその問題点を解決した陰解法(Crank-Nicolson法)を紹介します。


001_20140215031531793.png
Fig.1: 一次元熱伝導問題の解



偏微分方程式の陰解法


Scilabで熱拡散方程式 その1 (陽解法)では、Octaveの精義を参考にして、一次元の熱伝導を題材に偏微分方程式を陽解法で解くということを行いました。しかしながらScilabで熱拡散方程式 その2 (無次元化)で紹介したとおり、陽解法では λ ≦ 1/2 という安定性の条件から空間の分解能と時間の分解能を独立に決めることが出来ないという欠点があることが確認されました。

Octaveの精義では、この問題を陰解法のひとつであるCrank-Nicolson法を用いて解決する方法を紹介しています。そこで今回は、その1の計算をCrank-Nicolson法で計算します。

計算


計算結果が冒頭に示したFig.1です。
そのスクリプトはCN_sce.txtです。

clear;

// *** 時間と空間の分割 ***
n = 129; // 空間の分割数
dx = 1 / (n - 1); // 空間の刻み幅

r = 4

dt = r * dx ^ 2; // 時間の刻み幅
m = 1001; // 時間の分割数
dm = 100; // プロットする m の間隔

// *** 初期条件と境界条件 ***
// 初期条件
u = zeros(n,m);
// 境界条件
u(1,1) = 0;
u(n,1) = 1;

// *** 行列C ***
C = sparse(toeplitz([-2, 1, zeros(1,n - 2)]));
A = sparse(2 * eye(n,n) - r * C);
B = sparse(2 * eye(n,n) + r * C);
b = zeros(n,1);
b($) = 2 * r;

// *** 偏微分方程式の計算 ***
for j = 1:(m - 1)
// 境界以外の計算
u(:, j + 1) = A \ (B * u(:,j) + b);
// 境界条件
u(1, j + 1) = 0;
u(n, j + 1) = 1;
end

// *** グラフのプロット ***
plot([0:dx:1],u(:,1:dm:m));


陰解法の利点


Scilabで熱拡散方程式 その1 (陽解法)Scilabで熱拡散方程式 その2 (無次元化)では、陽解法の問題点として時間と空間の刻み幅を独立に決定することが出来ないという点を挙げました。

Crank-Nicolson法はこの問題点を改善したものです。


002_201402150315301ea.png
Fig.2: 1次元熱伝導方程式の陽解法(FTCS法)による数値解で、Octaveの精義のコードをScilabへ移植したもの。全てh2=1/322に固定しr = 1/6 (左上), 1/2 (右上), 65/128 (左下)と変化させた結果。r = 64/128 > 1/2 の場合には解が不安定になっていることが読み取れる。

003_20140215031530c4c.png
Fig.3: 1次元熱伝導方程式の陰解法(Crank-Nicolson法)による数値解で、Octaveの精義のコードをScilabへ移植したもの。全てh2=1/1282に固定しr=1 (左上),2 (右上), 4(左下)と変化させた結果。全てのrに対して安定な解が得られていることが分かる。



関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器






フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 偏微分方程式 熱伝導 陰解法 Crank-Nicolson法 

Scilabで熱拡散方程式 その2 (無次元化)

Scilabで熱拡散方程式 その1 (陽解法)ではOctaveの精義を参考にして以下に示す一次元の熱拡散方程式を無次元化してScilabで計算しました。

\frac{\partial T'}{\partial t'} = D^2 \frac{\partial^2 T'}{\partial {x'}^2}

ただし 0 ≦ x' ≦ λ, t' ≧ 0

(T': 温度, t': 時間, D2: 熱拡散率, x': 位置)

今回はもう少し具体的に、現実に即した問題を無次元化し、更にもう一度具体的な次元を持った値に直すという手順をやってみます。


問題設定


Scilabで熱拡散方程式 その1 (陽解法)では一次元の熱伝導の問題を解くために熱拡散方程式を無次元化して陽解法でで計算を行いました。
無次元化を行ったということは、計算結果は実際の長さや時間とは違う目盛りで書かれているということなので、無次元化とは逆の処理をして実際のものに直す必要があります。

今回は以下のような具体的な条件でScilabで熱拡散方程式 その1 (陽解法)と全く同じ計算を行います。

長さ1.5mの銅でできた棒の左端を0℃の氷に、右端を100℃のお湯に接しさせたとき、1時間後の温度分布はどのようになるか。ただし、最初の温度分布は全て0℃であったとする。

銅の熱拡散率D2 = 116 × 10-6 m2/sは以下の計算式とパラメータから計算しました。

D^{2} = \frac{k}{\rho C_p}

(D2: 熱拡散率, ρ: 密度, CP: 定圧比熱)

パラメータ
熱伝導度 k398 W/m/K
密度 ρ8.92×103 kg/m3
定圧モル比熱 CP,m24.44 J/mol/K
原子量 M6.3546×10-2 kg/mol
table.1: 熱拡散率D2=116×10-6 m2/s を計算するためのパラメータ。定圧比熱は密度と単位をそろえるためにCP=CP,m/Mとする。各パラメータの出展はWikipedia。


分子のおもちゃ箱 熱拡散長には色々な金属の熱拡散率が表にまとめられています。

熱拡散方程式


Scilabで熱拡散方程式 その1 (陽解法)と全く同じ内容をもう一度書いておきます。今回解くべき偏微分方程式は以下のものになります。

\frac{\partial T'}{\partial t'} = D^2 \frac{\partial^2 T'}{\partial {x'}^2}

ただし 0 ≦ x' ≦ λ, t' ≧ 0

(T': 温度, t': 時間, D2:熱拡散率, x': 位置)

なお文字の上についている'(アポストロフィー)は(後で行う)無次元化をしていないことを意味します(微分を意味するものではありません)。

方程式の無次元化


以下の様に方程式の無次元化することを考えます。

x' = λx
t' = τt
T'(x',t') = T0u(x,t)

ただし

\frac{D^2 \tau}{\lambda^2}=1

の関係に注意が必要です。

いま銅の棒の長さは1.5mなので λ=1.5 m です。
これに熱拡散率 D2 = 116 × 10-6 m2/s をあわせてτが必然的に決まります。

\tau = \frac{\lambda^2}{D^2}

計算結果は τ = 19394.442 s となりました。

最後に温度の無次元化ですが、これは単純に T0 = 100 ℃ と置けばよいでしょう。このように置けば 0 ≦ T' ≦ 100 に対して 0 ≦ u ≦ 1 となります。

結局、無次元化した熱拡散方程式は下記の様になります。

\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2}

0 ≦ x ≦ 1, t ≧ 0

方程式の差分化


無次元化された熱拡散方程式を差分化するに際して、時間と空間の刻み幅をまとめて

r = \frac{\Delta t}{(\Delta x)^2}

と置いたわけですが、これが r < 1/2 では計算が失敗し r = 1/6 のときだけ誤差が小さくなるという特徴があると前回書きました。

ここからは r = 1/6 を選ぶとして話を進めます。rにこれ以外の数字を選ぶにしても、必ず1/2 未満にならないようにチェックをする必要があります。

いま一次元空間 0 ≦ x ≦ 1 の範囲でn点ほど計算するとするならば、Δxの大きさは Δx = 1/(n-1) となります。
rとΔxが決まるとΔtも必然的に決まり Δt = r×(Δx)2 です。

時間はτを使って無次元化されているため、無次元化された時間の刻み幅Δtもτを使って実際の時間の刻み幅に戻すことが出来ます。

\tau \Delta t = \tau r (\Delta x)^2 = \frac{\tau r}{(n-1)^2}

仮に空間の計算点数を n=50 とすると、τΔt= 1.3462753 s となります。
今回の計算では1時間後(60×60=3600秒後)の温度分布を計算するので m ≒ 3600 / (τΔt) ≒ 2674 回の繰り返し計算をします。

計算結果


以下に示すのが 約1時間後(3599.9401秒後)の銅の棒の温度分布です。


001_20140123132748b05.png
Fig.1: 全体が0℃であった銅の棒の左端を0℃に固定、右端を100℃に固定した状態で約1時間(3599.9401秒)保持したときの内部の温度分布。


計算の手順はこのエントリに書いたとおりです。

clear;

// *** 銅の物性値 ***
k = 398; // 熱伝導度 398 W/m/K
rho = 8.92E3; // 密度 8.92×10^3 kg/m^3

cpm = 24.44; // 定積モル比熱 24.44 J/mol/K
m = 63.546; // 原子量 g/mol
mkg = m * 1E-3; // 原子量 kg/mol
cp = cpm / mkg; // 定積質量比熱 J/kg/K

d2 = k / (rho * cp) // 熱拡散率 m^2/s

// *** 無次元化前の時間と空間 ***
lambda = 1.5; // 棒の長さ λ (m)
tdmax = 60 * 60; // t'max (s) まで計算

// *** 無次元化 ***
tau = lambda ^ 2 / d2; // 時間の無次元化係数
tmax = tdmax / tau; // 無次元化時間で tmax まで計算
temp0 = 100; // u=1 に対してT'=100℃

// *** 時間と空間の分割 ***
n = 50; // 空間の分割数
dx = 1 / (n - 1); // 空間の刻み幅

r = 1 / 6;

dt = r * dx ^ 2; // 時間の刻み幅
m = round(tmax / dt); // 時間の分割数

// *** 初期条件と境界条件 ***
// 初期条件
U = zeros(n,m);
// 境界条件
U(1,1) = 0;
U(n,1) = 1;

// *** 行列P ***
s = 1 - 2 * r;
P = toeplitz([s, r, zeros(1, n - 2)]);

// *** 偏微分方程式の計算 ***
for j = 1:(m - 1)
// 境界以外の計算
U(:, j + 1) = P * U(:,j);
// 境界条件
U(1, j + 1) = 0;
U(n, j + 1) = 1;
end

// *** グラフのプロット ***
X = linspace(0,lambda,n);
plot(X,temp0 * U(:,m),'o-b');
zoom_rect([0,0,lambda,temp0]);

xlabel("Position (m)");
ylabel("Temperature (degree C)");


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器







フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 偏微分方程式 熱拡散方程式 熱伝導 

Scilabで熱拡散方程式 その1 (陽解法)

Scilabには常微分方程式ソルバや非線形方程式ソルバは存在しますが、偏微分方程式ソルバというものは存在しません。
そこで今回はOctaveの精義をを参考にして、偏微分方程式の最も簡単な例の一つである、一次元の熱伝導の問題を計算しました。

\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}


偏微分方程式


Scilabを利用すると色々な数値計算を行うことが出来ます。
この中で常微分方程式非線形方程式を解くのは比較的簡単でScilabがデフォルトで持っている命令をワンパターンで使うだけです。

これに対して偏微分方程式をワンパターンで解けるような命令はScilabには用意されていません。今回はOctaveの精義を参考に一次元の熱伝導を陽解法(FTCS法:Forward Time Space methods)で解いてみます。

熱拡散方程式


物質の拡散や熱伝導は熱拡散方程式と呼ばれる偏微分方程式で表されます。
今回扱う一次元の物体内部の温度分布は以下のような形になります。

\frac{\partial T'}{\partial t'} = D^2 \frac{\partial^2 T'}{\partial {x'}^2}

ただし 0 ≦ x' ≦ λ, t' ≧ 0

(T': 温度, t': 時間, D2:熱拡散率, x': 位置)

なお文字の上についている'(アポストロフィー)は(後で行う)無次元化をしていないことを意味します(微分を意味するものではありません)。

方程式の無次元化


次にこれを数値計算が行いやすいように、以下の様に無次元化します。

x' = λx
t' = τt

するとxの範囲が 0 ≦ x ≦ 1 となります。

またτは

\frac{D^2 \tau}{\lambda^2}=1

すなわち

\tau = \frac{\lambda^2}{D^2}

です。

温度も計算結果の値が大きすぎたり小さすぎたりしないように適切なT0を選んで

T'(x',t') = T0u(x,t)

の様に無次元化します。

すると偏微分方程式は以下のような形になります。

\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2}

0 ≦ x ≦ 1, t ≧ 0

無次元化によって

T' → u
x' → x
t' → t

と3つの変数が変更されました。
以降ではこの無次元化された偏微分方程式について数値計算を行います。

方程式の差分化


更に前述の無次元化された偏微分方程式の微分を差分に変換します。

\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2}

を差分化すると以下の様になります。

\frac{\partial u(x,t)}{\partial t} \sim \frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}

\frac{\partial^2 u(x,t)}{\partial x^2} \sim \frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x, t)}{(\Delta x)^2}

式が長くなるので、以下の様に ui,j を定義します。

u_{i,j} \equiv u((i-1)\Delta x, (j-1)\Delta t)

結局

\frac{u_{i,j+1}-u_{i,j}}{\Delta t} = \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^2}

ここで

r = \frac{\Delta t}{(\Delta x)^2}

とおくと

u_{i,j+1} = (1-2r)u_{i,j} + r(u_{i+1,j}+u_{i-1,j})

これには式の見た目が簡単になるということ以上に重要な意味があります。
rが小さいほど計算が高速になるのですが r < 1/2 では計算に失敗し正しい結果が得られないことが知られています。また r = 1/6 のときだけ打切り誤差が特別に小さくなるという性質があることも知られています。従って実際の計算では r = 1/2 または r = 1/6 のどちらかが採用されます。

この事は裏を返せば空間分解能を上げたいときは、同時に時間分解能を上げなければならない(逆も然り)ということでもあります。

Scilabでガウス型波束の散乱でハミルトニアンを行列で表したのと同様に

7861cb402820e6f58fddc8d3abb3e335_90_black.png

となる様な行列Pを考えると

f99827543db336a6148d03e0d830d8ab_90_black.png

ただし

r = \frac{\Delta t}{(\Delta x)^2}

s = 1 - 2r

です。

初期条件と境界条件


常微分方程式を解くために初期条件が必要であったのと同様に、偏微分方程式を解くためには初期条件と境界条件が必要になります。
問題設定によって色々な境界条件が考えられ、その境界条件に応じて異なったプログラムを書かなければならない事が偏微分方程式の難しさの元になっているのだと思うのですが、今回は入門書でよく見る以下のような簡単なものを考えます。

初期条件(t=0)
u(x,0) = f(x)

境界条件(x=0, x=1)
u(0,t) = 0
u(1,t) = 1

この初期条件と境界条件は、次のような状態を表していると考えることが出来ます。

まず、金属の棒全体を0℃の状態にしておく(初期条件)。
次に左端を0℃の氷に接しさせ、右端を100℃のお湯に接しさせる(境界条件)。

これを時間発展させれば、金属の棒の内部の温度分布がどうなるかを調べられます。
非常に長い時間を置いた後の最終的な温度分布は、直線的になるであろうことは、計算しなくても直感的に予想が付きます。

計算結果


以下に計算結果を示します。
各線は 200×Δt の時間ごとに結果をプロットしたもので一番最後のものが 1600×Δt の時間のものです。
この段階では温度分布がほとんど直線的になっており、直感的な予想が正しかったことが分かります。


001_20140119171908a1e.png
Fig.1: 計算結果


clear;

// *** 時間と空間の分割 ***
n = 33; // 空間の分割数
dx = 1 / (n - 1); // 空間の刻み幅

r = 1 / 6;

dt = r * dx ^ 2; // 時間の刻み幅
m = 1601; // 時間の分割数
dm = 200; // プロットする m の間隔

// *** 初期条件と境界条件 ***
// 初期条件
U = zeros(n,m);
// 境界条件
U(1,1) = 0;
U(n,1) = 1;

// *** 行列P ***
s = 1 - 2 * r;
P = toeplitz([s, r, zeros(1, n - 2)]);

// *** 偏微分方程式の計算 ***
for j = 1:(m - 1)
// 境界以外の計算
U(:, j + 1) = P * U(:,j);
// 境界条件
U(1, j + 1) = 0;
U(n, j + 1) = 1;
end

// *** グラフのプロット ***
plot([0:dx:1],U(:,1:dm:m));


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器






フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 偏微分方程式 熱伝導 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ