Scilabでブラウン運動 その3

Scilabでブラウン運動 その2では、単位時間あたりに任意の方向に距離1だけ移動するランダムウォークのスクリプトを書きました。これはScilabでブラウン運動 その1では移動できる角度が制限されていたことに対する拡張です。

今回は、さらに発展させて、単位時間あたりに移動する距離もランダムに決定するように拡張を行います。

001_20141109111602617.png
Fig.1: 一次元のランダムウォーク。各ステップでの移動距離を1に固定したもの(青)と移動距離の平均二乗変位平方根が1となるような正規分布から計算したもの(赤)。赤線は、移動距離が1よりも短いこともあれば長いこともある。



一次元のランダムウォーク


二次元から始めてもよいのですが、移動距離を固定したものとの比較が簡単なため、一次元のスクリプトも示します。
各ステップにおける移動量を乱数で与える場合、どのような乱数を使うかの選択肢がいくつかあると思いますが、今回は正規分布(ガウス関数)としました。Scilabにおいてはgrandを利用することによって正規分布に従う乱数を生成する事ができます。

clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 20; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動距離が正規分布に従う場合
xigauss = grand(tnum,1,'nor',av,u);
Sgauss = [0; cumsum(xigauss)];
// 移動距離が一定の場合
xifix = 2 * u * (rand(tnum,1) >= 0.5) - u;
Sfix = [0; cumsum(xifix)];

// *** グラフのプロット ***
plot(t,Sgauss,'-or');
plot(t,Sfix,'-ob');
xlabel("x position");
ylabel("y position");


二次元のランダムウォーク


二次元への拡張を行います。ソースコードを比較するなら今回の一次元のものと比較するよりもScilabでブラウン運動 その2の二次元のものと比較する方がわかりやすいです。ほとんど r=1 を r=abs(grand(1,tnum,'nor',av,u)) にしただけなので。

002_20141109111601aa4.png
Fig.2: 二次元のランダムウォーク


clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動する距離
r = abs(grand(1,tnum,'nor',av,u));
// 移動する方向
theta = 2 * %pi * rand(1,tnum);
// 移動量
xi = r .* cos(theta);
yi = r .* sin(theta);
// 最終的な座標
S = [zeros(2,1), [cumsum(xi,'c'); cumsum(yi,'c')]];

// *** グラフのプロット ***
plot(S(1,:),S(2,:),'-b');
xlabel("x position");
ylabel("y position");


三次元のランダムウォーク


三次元への拡張もこれまでと全く同様です。

003_20141109111601d60.png
Fig.3: 三次元のランダムウォーク


clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動する距離
r = abs(grand(1,tnum,'nor',av,u));
// 移動する方向
theta = 2 * %pi * rand(1,tnum);
phi = 2 * %pi * rand(1,tnum);
// 移動量
xi = r .* sin(theta) .* cos(phi);
yi = r .* sin(theta) .* sin(phi);
zi = r .* cos(phi);
// 最終的な座標
S = [zeros(3,1), [cumsum(xi,'c'); cumsum(yi,'c'); cumsum(zi,'c')]];

// *** グラフのプロット ***
param3d(S(1,:),S(2,:),S(3,:));
xlabel("x position");
ylabel("y position");
zlabel("z position");


関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 乱数 モンテカルロ解析 確率論 ランダムウォーク 正規分布 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ