Scilabでブラウン運動 その3

Scilabでブラウン運動 その2では、単位時間あたりに任意の方向に距離1だけ移動するランダムウォークのスクリプトを書きました。これはScilabでブラウン運動 その1では移動できる角度が制限されていたことに対する拡張です。

今回は、さらに発展させて、単位時間あたりに移動する距離もランダムに決定するように拡張を行います。

001_20141109111602617.png
Fig.1: 一次元のランダムウォーク。各ステップでの移動距離を1に固定したもの(青)と移動距離の平均二乗変位平方根が1となるような正規分布から計算したもの(赤)。赤線は、移動距離が1よりも短いこともあれば長いこともある。



一次元のランダムウォーク


二次元から始めてもよいのですが、移動距離を固定したものとの比較が簡単なため、一次元のスクリプトも示します。
各ステップにおける移動量を乱数で与える場合、どのような乱数を使うかの選択肢がいくつかあると思いますが、今回は正規分布(ガウス関数)としました。Scilabにおいてはgrandを利用することによって正規分布に従う乱数を生成する事ができます。

clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 20; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動距離が正規分布に従う場合
xigauss = grand(tnum,1,'nor',av,u);
Sgauss = [0; cumsum(xigauss)];
// 移動距離が一定の場合
xifix = 2 * u * (rand(tnum,1) >= 0.5) - u;
Sfix = [0; cumsum(xifix)];

// *** グラフのプロット ***
plot(t,Sgauss,'-or');
plot(t,Sfix,'-ob');
xlabel("x position");
ylabel("y position");


二次元のランダムウォーク


二次元への拡張を行います。ソースコードを比較するなら今回の一次元のものと比較するよりもScilabでブラウン運動 その2の二次元のものと比較する方がわかりやすいです。ほとんど r=1 を r=abs(grand(1,tnum,'nor',av,u)) にしただけなので。

002_20141109111601aa4.png
Fig.2: 二次元のランダムウォーク


clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動する距離
r = abs(grand(1,tnum,'nor',av,u));
// 移動する方向
theta = 2 * %pi * rand(1,tnum);
// 移動量
xi = r .* cos(theta);
yi = r .* sin(theta);
// 最終的な座標
S = [zeros(2,1), [cumsum(xi,'c'); cumsum(yi,'c')]];

// *** グラフのプロット ***
plot(S(1,:),S(2,:),'-b');
xlabel("x position");
ylabel("y position");


三次元のランダムウォーク


三次元への拡張もこれまでと全く同様です。

003_20141109111601d60.png
Fig.3: 三次元のランダムウォーク


clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動する距離
r = abs(grand(1,tnum,'nor',av,u));
// 移動する方向
theta = 2 * %pi * rand(1,tnum);
phi = 2 * %pi * rand(1,tnum);
// 移動量
xi = r .* sin(theta) .* cos(phi);
yi = r .* sin(theta) .* sin(phi);
zi = r .* cos(phi);
// 最終的な座標
S = [zeros(3,1), [cumsum(xi,'c'); cumsum(yi,'c'); cumsum(zi,'c')]];

// *** グラフのプロット ***
param3d(S(1,:),S(2,:),S(3,:));
xlabel("x position");
ylabel("y position");
zlabel("z position");


関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 乱数 モンテカルロ解析 確率論 ランダムウォーク 正規分布 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSPDS5022定電流スイッチング回路確率論半導体分散関係シェルスクリプト乱数レベルシフトHP6632Aトランジスタ技術温度解析可変抵抗I2CブレッドボードR6452A反強磁性数値積分バンド構造バンドギャップセミナー絶縁偏微分方程式非線形方程式ソルバPWscf熱設計シュミットトリガLED三端子レギュレータ順列・組み合わせLM358GW近似カオスマフィンティン半径ISO-I2CフォトカプラA/Dコンバータ発振回路74HC4053数値微分直流動作点解析サーボPC817CアナログスイッチUSB補間TL431カレントミラーbzqltyVESTA電子負荷イジング模型LDA開発環境ブラべ格子FFT量子力学2ちゃんねるチョッパアンプ単振り子ポケモンGOスーパーリーグ標準ロジックQuantumESPRESSO基本並進ベクトルパラメトリック解析アセンブラBSchトレーナーバトル抵抗Maximaラプラス方程式失敗談状態方程式SMPキュリー温度スイッチト・キャパシタ位相図繰り返し熱伝導gfortranコバルトewidthTLP621不規則合金ランダムウォーク六方最密充填構造FET最適化相対論スピン軌道相互作用QSGWQuantum_ESPRESSOGGAVCA仮想結晶近似スレーターポーリング曲線cygwinZnOシュレディンガー方程式フォノンNE555詰め回路条件分岐固有値問題最大値ダイヤモンドガイガー管TLP552マントル自動計測データロガーQNAPUPSCIF井戸型ポテンシャルMCUxcrysdenゼーベック係数格子比熱最小値LM555フェルミ面fsolve過渡解析差し込みグラフ三角波起電力スーパーセル第一原理計算ブラウン運動FXA-7020ZROpenMPTLP521Ubuntuハーフメタル熱力学Writer509ubuntu平均場近似テスタawkLMC662フィルタMAS830LCK1026トランスPIC16F785AACircuit負帰還安定性ハイパーリーグCapSenseナイキスト線図ノコギリ波2SC1815EAGLEPvPP-10OPA2277MBEPGA入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分不純物問題擬ポテンシャル状態図cif2cellPWguiSIC二相共存リジッドバンド模型edeltquantumESPRESSOスワップ領域ルチル構造ウルツ鉱構造BaO岩塩構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ