Scilabでブラウン運動 その3

Scilabでブラウン運動 その2では、単位時間あたりに任意の方向に距離1だけ移動するランダムウォークのスクリプトを書きました。これはScilabでブラウン運動 その1では移動できる角度が制限されていたことに対する拡張です。

今回は、さらに発展させて、単位時間あたりに移動する距離もランダムに決定するように拡張を行います。

001_20141109111602617.png
Fig.1: 一次元のランダムウォーク。各ステップでの移動距離を1に固定したもの(青)と移動距離の平均二乗変位平方根が1となるような正規分布から計算したもの(赤)。赤線は、移動距離が1よりも短いこともあれば長いこともある。



一次元のランダムウォーク


二次元から始めてもよいのですが、移動距離を固定したものとの比較が簡単なため、一次元のスクリプトも示します。
各ステップにおける移動量を乱数で与える場合、どのような乱数を使うかの選択肢がいくつかあると思いますが、今回は正規分布(ガウス関数)としました。Scilabにおいてはgrandを利用することによって正規分布に従う乱数を生成する事ができます。

clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 20; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動距離が正規分布に従う場合
xigauss = grand(tnum,1,'nor',av,u);
Sgauss = [0; cumsum(xigauss)];
// 移動距離が一定の場合
xifix = 2 * u * (rand(tnum,1) >= 0.5) - u;
Sfix = [0; cumsum(xifix)];

// *** グラフのプロット ***
plot(t,Sgauss,'-or');
plot(t,Sfix,'-ob');
xlabel("x position");
ylabel("y position");


二次元のランダムウォーク


二次元への拡張を行います。ソースコードを比較するなら今回の一次元のものと比較するよりもScilabでブラウン運動 その2の二次元のものと比較する方がわかりやすいです。ほとんど r=1 を r=abs(grand(1,tnum,'nor',av,u)) にしただけなので。

002_20141109111601aa4.png
Fig.2: 二次元のランダムウォーク


clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動する距離
r = abs(grand(1,tnum,'nor',av,u));
// 移動する方向
theta = 2 * %pi * rand(1,tnum);
// 移動量
xi = r .* cos(theta);
yi = r .* sin(theta);
// 最終的な座標
S = [zeros(2,1), [cumsum(xi,'c'); cumsum(yi,'c')]];

// *** グラフのプロット ***
plot(S(1,:),S(2,:),'-b');
xlabel("x position");
ylabel("y position");


三次元のランダムウォーク


三次元への拡張もこれまでと全く同様です。

003_20141109111601d60.png
Fig.3: 三次元のランダムウォーク


clear;

// *** 計算の設定 ***
u = 1; // 1ステップの間の平均二乗変位平方根
av = 0;
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
// 移動する距離
r = abs(grand(1,tnum,'nor',av,u));
// 移動する方向
theta = 2 * %pi * rand(1,tnum);
phi = 2 * %pi * rand(1,tnum);
// 移動量
xi = r .* sin(theta) .* cos(phi);
yi = r .* sin(theta) .* sin(phi);
zi = r .* cos(phi);
// 最終的な座標
S = [zeros(3,1), [cumsum(xi,'c'); cumsum(yi,'c'); cumsum(zi,'c')]];

// *** グラフのプロット ***
param3d(S(1,:),S(2,:),S(3,:));
xlabel("x position");
ylabel("y position");
zlabel("z position");


関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 乱数 モンテカルロ解析 確率論 ランダムウォーク 正規分布 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ