Scilabで最急降下法 その2

Scilabで最急降下法 その1では1変数の関数 f(x) に対して最急降下法を用いて最小値を求めました。今回は2変数の関数 f(x,y) について最小値を求めます。

001_20170509143114675.png
Fig.1: 最急降下法による最小値探査



具体的には二次元のガウス関数に-1を掛けた関数を f(x,y) とします。
\begin{equation}
f(x,y)=\frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}}\exp\left\{-\frac{1}{2(1-\rho^2)}\\
\times\left(\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} +\frac{(y-\mu_2)^2}{\sigma_2^2}\right) \right\}
\end{equation}
ここで
\begin{equation}
\rho=\frac{\sigma_{12}}{\sigma_1\sigma_2}
\end{equation}

最急降下法の値の更新は二次元の場合は以下のように行います。
\begin{equation}
\begin{pmatrix}
x^{(k+1)}\\
y^{(k+1)}
\end{pmatrix}
=
\begin{pmatrix}
x^{(k)}\\
y^{(k)}
\end{pmatrix}
-\alpha
\begin{pmatrix}
\frac{\partial f(x^{(k)}, y^{(k)})}{\partial x}\\
\frac{\partial f(x^{(k)}, y^{(k)})}{\partial y}
\end{pmatrix}
\end{equation}
停止条件は ∂f/∂x < ε かつ ∂f/∂y < ε とすればよいと思います。

clear;

// *** 二次元ガウス分布 ***
mu1 = 3; mu2 = 1;
mu = [mu1; mu2];
sigma1 = sqrt(10); sigma2 = sqrt(10); sigma12 = 5;
SIGMA = [sigma1^2, sigma12; sigma12, sigma2^2];
rho = sigma12 / (sigma1 * sigma2);
function z = func(x, y)
z = -1 ./ (2 * %pi * sigma1 * sigma2 * sqrt(1 - rho)) ..
.* exp(-1 / (2 .* (1 - rho^2)) ..
.* ((x - mu1) .^ 2 ./ (sigma1 ^ 2) - 2 .* rho .* (x - mu1) .* (y - mu2) ./ (sigma1 * sigma2) + ((y - mu2) .^ 2) ./ (sigma2 ^ 2)))
endfunction


// *** 数値微分 ***
h = 1E-3;
function dzx = dfx(x, y)
dzx = (func((x+h), y) - func((x-h), y)) ./ (2 * h)
endfunction

function dzy = dfy(x, y)
dzy = (func(x, (y+h)) - func(x, (y-h))) ./ (2 * h)
endfunction

// *** グラフのプロット ***
x = linspace(-10,10);
y = linspace(-10,10);
[X,Y] = ndgrid(x,y);
Z = func(X,Y);
// 色の設定
//xset("colormap",jetcolormap(64))
// xset("colormap",graycolormap(64))
// Sgrayplot(x,y,Z)
xset("fpf"," "); // 等高線に値を表示しない
contour2d(x,y,Z,10);
xmin = min(X); xmax = max(X); ymin = min(Y); ymax = max(Y);
zoom_rect([xmin,ymin,xmax,ymax]);




// *** 最小値の計算 ***
// 停止条件
err = 1E-5;
a = 200;
// 初期値
x = -4; y = 4;
z = func(x, y);
dx = dfx(x, y);
dy = dfy(x, y);
plot(x, y, "xk");
// 最小値の計算
while ((abs(dx) > err) | (abs(dy) > err))
x = x - a * dx;
y = y - a * dy;
dx = dfx(x, y);
dy = dfy(x, y);
plot(x, y, ".r");
end
// 計算結果
x, y
plot(x, y, "xk");


関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 最適化 最小値 最大値 

Scilabで最急降下法 その1

Scilabで何らかの関数 f(x) の最小値(あるいは最大値)を計算することを考えます。関数の値を計算するのが簡単な場合は x の定義域全体で f(x) を計算した後 minmax を使うという方法もあります。しかしながら f(x) の計算にそれなりの時間がかかる場合や f(x, y) といったように引数がたくさんある場合は効率的ではないと思います。

そこで今回は最急降下法のアルゴリズムを利用して f(x) の最小値を求めるということをやってみます。

001_20170507020049254.png

Fig.1: 最急降下法での最小値探索。上が関数f(x)の値、下が微分値f'(x)



最小値を求める関数


さて、実際に最小値を求める関数 f(x) ですが、今回は単純にガウス関数に -1 を掛けたものにします。
\begin{equation}
f(x) = - \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left( -\frac{(x-\mu)^2}{2\sigma^2}\right)
\end{equation}
当然ながら、f(x)が最小になるのは x = μ のときです。

最急降下法


高校の数学で習ったとおり f(x) が最大値や最小値(や極値)をとるときその微分は f'(x) = df(x)/dx = 0 となります。最急降下法は、関数の微分を計算しその傾きが大きいほうへ f'(x)=0 となる x を探すアルゴリズムです。具体的には以下の手続きを繰り返します。
  1. x の初期値 x(0) を決める
  2. f'(x) < ε なら終了
  3. x(k+1) = x(k) - αf'(x(k))
  4. 2.に戻る

実際には α や ε を上手に決めておく必要があります。αは勾配の方向にどの程度進むかを決めるパラメータ(下記Scilabスクリプトではa)で、εは計算の終了条件を決めるパラメータ(下記Scilabスクリプトではerr)です。

Scilabスクリプト


clear;

// *** 一次元ガウス分布 ***
function y = func(x)
mu = 3;
sigma = 1;
y = -1 / sqrt(2*%pi*sigma^2) * exp(-1 * ((x - mu) .^ 2) ./ (2*sigma^2))
// y = cos(x)
endfunction

// *** 数値微分 ***
function y = dfunc(x)
h = 1E-4;
y = (func(x+h) - func(x-h)) ./ (2*h)
endfunction

// *** グラフのプロット ***
X = linspace(0,6);
Y = func(X);
dY = dfunc(X);
subplot(2,1,1);
plot(X, Y);
subplot(2,1,2);
plot(X, dY);

// *** 最小値の計算 ***
// 停止条件
err = 1E-3;
a = 0.5;
// 初期値
x = 1;
y = func(x);
dx = dfunc(x);
subplot(2,1,1);
plot(x, y, ".r");
subplot(2,1,2);
plot(x, dx, ".r");

// *** 最小値の計算 ***
while abs(dx) > err
x = x - a * dx;
dx = dfunc(x);
y = func(x);
subplot(2,1,1);
plot(x, y, ".r");
subplot(2,1,2);
plot(x, dx, ".r");
end

// *** 計算結果 ***
x
subplot(2,1,1);
plot(x, y, "xk");


参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 最適化 最小値 最大値 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ