Scilabで一次元のラプラス方程式 その3

Scilabで一次元のラプラス方程式 その1その2では一次元のラプラス方程式を 0 ≦ x ≦ 1 の範囲で以下の様なディリクレの境界条件で解きました。

一次元ラプラス方程式:
\frac{\partial^2 u}{\partial x^2} = 0

ディリクレ境界条件:
u = 1 (x = 0)
u = 0 (x = 1)

今回は、同様の方程式を x = 0 に関して以下の様なノイマンの境界条件で解きました。

ノイマン境界条件:
∂u/∂x = -1 (x = 0)


ラプラス方程式と境界条件


Scilabで一次元のラプラス方程式 その1その2では一次元のラプラス方程式をScilabを用いて数値的に解きました。

\frac{\partial^2 u}{\partial x^2} = 0

偏微分方程式を解くためには、この式のほかに幾つかの境界条件が必要です。
偏微分方程式の数値解法入門によると偏微分方程式の境界条件に関して以下の様に書かれています。

境界上においてuの値(関数値)が指定されている境界条件を第1種の境界条件あるいディリクレ(Dirichlet)の境界条件という.
一方,境界上でその境界の外向き法線方向nの微分係数∂u/∂nが指定されている場合がある.これを第2種の境界条件あるいはノイマン(Neumann)の境界条件という.

Scilabで一次元のラプラス方程式 その1その2、及びScilabで熱拡散方程式 その1その2その3は全てディリクレの境界条件でした。そこで今回は、一次元のラプラス方程式を境界の片側をノイマンの境界条件で、反対側をディリクレの境界条件として数値的に解くことにします。

連立方程式の立て方はScilabで一次元のラプラス方程式 その1の流儀で行きます。

問題設定


解くべき方程式は、一次元のラプラス方程式です。

\frac{\partial^2 u}{\partial x^2} = 0

ただし 0 ≦ x ≦ 1
境界条件は

x = 0 にて
\frac{\partial u}{\partial x} = -1

x = 1 にて
u = 0

とします。


001_20140220011035c9c.png
Fig.1: 計算の設定(と計算結果)


まず前回までと同様にディリクレ境界条件と偏微分方程式から以下の連立方程式が立ちます。

u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u3 - 2u4 + u5 = 0
u5 = 0

当然ながらこれだけでは変数の数に対して方程式の数が足りないので、ノイマンの境界条件についても考えます。1階の偏微分をを前進差分近似で表すと以下の様になります。

\frac{\partial u}{\partial x} = \frac{u_{i+1} - u_{i}}{\Delta x}

より良い精度で計算をするためには(-Δx,u0)の点も用意して中心差分近似を使うべきなのでしょうが、今回は前進差分近似で済ませることにします。

これがx = 0 で ∂u/∂x = -1 なので

\frac{u_2 - u_1}{\Delta x} = -1

したがって

u1 - u2 = Δx

結局、連立方程式は以下の様になります。

u1 - u2 = Δx
u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u3 - 2u4 + u5 = 0
u5 = 0

これをScilabで連立一次方程式の方法で解くプログラムがLaplace1d3_sce.txtです。

clear;

// xの刻み幅
dx = 1 / 4;
// グラフ用のx座標
x = [0:dx:1];

// *** 連立方程式の定義 ***
A = [1 -1 0 0 0;
1 -2 1 0 0;
0 1 -2 1 0;
0 0 1 -2 1;
0 0 0 0 1];
b = [dx;
0;
0;
0;
0];

// *** ラプラス方程式の解 ***
u = A \ b;

// *** グラフのプロット ***
// グラフのプロット
plot(x,u,'-ob');
// グラフの装飾
xlabel("x");
ylabel("u");
zoom_rect([0,0,1.2,1.2]);


境界条件の意味


ラプラス方程式は、熱拡散方程式や波動方程式の時間微分の項をゼロと置いたものでした。従って一次元のラプラス方程式自体の物理的なイメージは、例えば、充分に長い時間を置いた針金の中の温度分布などとして理解できます。

Scilabで熱拡散方程式 その1その2その3で分かるとおり、ディリクレの境界条件は、境界での温度を指定することに対応します。
一方で、ノイマンの境界条件は、境界での温度勾配を指定することに対応します。熱伝導に対するフーリエの法則は以下の様に表すことができます。

q = k \frac{\partial T}{\partial x}

(q: 熱フラックス, k: 熱伝導度, T: 温度, x: 位置)

フーリエの法則の式から明らかなように、境界での温度勾配を指定するということは、境界での熱流量を指定することと同じです。特に ∂T/∂x = 0 の場合は、熱流量がゼロということなので、境界が断熱的であることを意味しています。

関連エントリ




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 偏微分方程式 ラプラス方程式 境界条件 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性PICCPAOPアンプecalj常微分方程式モンテカルロ解析状態密度odeトランジスタインターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632Aトランジスタ技術ブレッドボード可変抵抗温度解析I2CR6452A反強磁性バンドギャップ確率論数値積分セミナー偏微分方程式絶縁バンド構造熱設計非線形方程式ソルバシュミットトリガISO-I2CLEDマフィンティン半径GW近似三端子レギュレータLM358A/DコンバータカオスフォトカプラUSBPC817C直流動作点解析サーボ74HC4053アナログスイッチTL431発振回路カレントミラー数値微分単振り子量子力学開発環境補間2ちゃんねるチョッパアンプbzqltyFFT電子負荷アセンブラBSchLDA標準ロジックパラメトリック解析ブラべ格子基本並進ベクトルイジング模型VESTAVCAMaximaSMPewidthGGA仮想結晶近似FET位相図キュリー温度QSGWTLP621ランダムウォーク不規則合金gfortranコバルト相対論失敗談抵抗状態方程式スレーターポーリング曲線ラプラス方程式スピン軌道相互作用スイッチト・キャパシタ六方最密充填構造熱伝導繰り返しcygwinTLP552条件分岐TLP521NE555LM555マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測Writer509UPSQNAPダイヤモンドデータロガー格子比熱熱力学平均場近似OpenMPブラウン運動スーパーセルUbuntuフェルミ面差し込みグラフubuntuハーフメタルfsolve最適化第一原理計算固有値問題シュレディンガー方程式最小値awk起電力井戸型ポテンシャルCIFxcrysden最大値結晶磁気異方性PGATeX非線型方程式ソルバ2SC1815等高線OPA2277面心立方構造初期値FSM正規分布interp1ウィグナーザイツ胞フィルタfccL10構造合金BaOウルツ鉱構造CapSense岩塩構造ルチル構造ZnO二相共存磁気モーメント不純物問題電荷密度重積分SICスワップ領域リジッドバンド模型multiplotジバニャン方程式gnuplotc/a全エネルギー半金属デバイ模型edeltquantumESPRESSOノコギリ波フォノン固定スピンモーメントspecx.f等価回路モデル円周率パラメータ・モデルヒストグラム不規則局所モーメントTS-112TS-110直流解析PCExcelシンボルGimp日本語最小二乗法フラクタルマンデルブロ集合縮退クーロン散乱三次元ゼーベック係数キーボード入出力関数フィッティング文字列疎行列Realforceトラックボール線種EAGLE連立一次方程式MBECrank-Nicolson法AACircuit負帰還安定性ナイキスト線図マテリアルデザインP-10化学反応ifort境界条件陰解法熱拡散方程式MAS830LCK1026グラフの分割軸ラベル凡例片対数グラフトランスHiLAPW両対数グラフLMC662PIC16F785ヒストグラム確率論

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ