AkaiKKRで岩塩構造 BaO2

AkaiKKR(machikaneyama)を用いて、岩塩型構造のBaOのバンド構造と状態密度を計算しました。バンドギャップが開いた半導体であることが確認できました。

rocksalt-BaO.jpg

Fig.1: 岩塩型構造BaO



岩塩型構造


AkaiKKRでルチル構造SnO2 その1, その2では、AkaiKKR(machikaneyama)を用いてルチル構造の半導体であるSnO2, GeO2, TeO2のバンド構造を計算しました。今回は岩塩構造のBaOの計算を行います。

Fig.1に示すのが、岩塩型の結晶構造です。面心立方構造を2つ組み合わせた形をしているということが分かります。多くのイオン結晶が個の結晶構造をとります。具体的には NaCl, MgO, KCl, CuO などです。
AkaiKKR BBSのVon Braun Nascimentoさんの書き込みでも、岩塩構造のBaOの計算がされています。

入力ファイルは以下のようになりました。
c---------------------BaO----------------------------------
go data/BaO
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 10.4621, , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.5 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.03
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Ba 1 1 0.0 2 56 100
O 1 1 0.0 2 8 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0.0 0.0 0.0 Ba
0.5 0.5 0.5 O
c------------------------------------------------------------


結果


Fig.2-3がBaOのバンド構造と状態密度です。

BaO-band.png
BaO-DOS.png

Fig.2-3: 岩塩構造BaOの状態密度とバンド構造


フェルミエネルギーが多少価電子帯にかかっていますが、バンドギャップは開いていて半導体となっていることが読み取れます。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama 岩塩構造 BaO 半導体 

ecaljでB-dopedダイヤモンド

ecaljと仮想結晶近似(VCA)を用いて、ダイヤモンドの炭素原子を5%ホウ素に置換したホウ素ドープダイヤモンドの電子構造を計算しました。結果は、AkaiKKRでB(N)-dopedダイヤモンドAkaiKKRでリジッドバンド模型もどきの結果と調和的で、純粋なダイヤモンドは絶縁体、ホウ素をドープしたダイヤモンドは金属的なバンド構造となりました。

bandplot-bdia-vca.png
Fig.1: ダイヤモンドとホウ素をドープしたダイヤモンドのバンド構造



仮想結晶近似(VCA)


不規則合金の電子構造の計算を行うためには、色々な近似が考えられます。
AkaiKKRでB(N)-dopedダイヤモンドでは、AkaiKKR(Machikaneyama)に実装されているコヒーレントポテンシャル近似(CPA)を用いました。AkaiKKRでリジッドバンド模型もどきでは、AkaiKKRを少しトリッキーに使い、リジッドバンド模型のような計算を行いました。他にもスーパーセルを使う方法も考えられます(参考: AkaiKKRでスーパーセル その1)。

今回は、更に別の方法として仮想結晶近似(VCA)を用いてホウ素をドープしたダイヤモンドの電子構造をecaljを用いて計算しました。

なお、これらの近似のエライ(つまり、近似として上等である)順番は、コヒーレントポテンシャル近似、仮想結晶近似、リジッドバンド模型です。スーパーセル法とコヒーレントポテンシャル近似は、どちらも一長一短なので、必ずしもどちらがエライというわけでもないはずです。

計算手法


計算手法は、基本的にはecaljで仮想結晶近似と同様です。通常通り、ダイヤモンドの結晶構造ファイルを作成します(参考: ecaljの実行手順(LDA計算), ecaljでシリコンのバンド構造(LDA計算))。
STRUC   ALAT=6.74
PLAT=0.0 1/2 1/2
1/2 0.0 1/2
1/2 1/2 0.0
SITE ATOM=C POS=0.0 0.0 0.0
ATOM=C POS=1/4 1/4 1/4

この結晶構造ファイルから ctrlgenM1.py を用いて制御ファイルを自動生成させます。

更にこの制御ファイルをテキストエディタで編集します。今回は、炭素(原子番号:6)の5%をホウ素(原子番号:5)に置換するので 6*0.95 + 5*0.05 = 5.95 とします。
SPEC
ATOM=C Z=5.95 R=1.42


計算結果


計算結果のバンド構造をFig.1に、状態密度をFig.2に示します。

tdos-bdia-vca.png
Fig.2: ダイヤモンドと炭素の5%をホウ素に置換したダイヤモンドの状態密度


純粋なダイヤモンドは半導体ですが、ホウ素をドープしたダイヤモンドはフェルミ準位が荷電しバンドの中にあるような、金属的なバンド構造になりました。仮想結晶近似(VCA)は、コヒーレントポテンシャル近似(CPA)とリジッドバンド模型の中間のエラさに位置するので、当然ながらこれら二つと似たような結果になります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 仮想結晶近似 VCA 半導体 ダイヤモンド 

AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

AkaiKKRでB(N)-dopedダイヤモンド

AkaiKKR(machikaneyama)のコヒーレントポテンシャル近似(CPA)を用いて、ホウ素や窒素をドープしたダイヤモンドの電子構造を計算しました。
得られた状態密度は、状態密度の形状が変わらず、フェルミ準位の位置が変わるだけであるという、リジッドバンド模型でよく近似できることが分かりました。

diamond_201603202355181f7.png
Fig.1: ダイヤモンド(赤)、ホウ素ドープダイヤモンド(緑)、窒素ドープダイヤモンド(青)の状態密度



ホウ素(窒素)ドープダイヤモンド


AkaiKKRでダイヤモンド型構造半導体で計算したとおり、ダイヤモンドは大きなバンドギャップを持つ半導体(あるいは絶縁体)です。しかしながらダイヤモンドを構成する炭素原子の一部(5%程度)をホウ素や窒素に置き換えると、金属的なフェルミ準位に有限の状態を持つ電子構造になります。AkaiKKR(machikaneyama)を用いたバンド計算は、すでにKobashi (2014a), Kobashi (2014b)によって行われています。今回は、同様の計算を行ってみます。

計算手法


AkaiKKRを用いて、炭素原子の5%をホウ素、または、窒素に置き換えた結晶の状態密度を計算しました。これまでの計算と比較して特筆すべきテクニックは特にありませんが、バンドギャップの過小評価をできるだけ避けるために、空孔を入れて、原子球近似(ASA)を用いました。また、格子定数は不純物のドープに対して変化しないと仮定して a = 6.74 Bohr としました。
置換不純物は、コヒーレントポテンシャル近似(CPA)を用いて計算しました。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
dos data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.67 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 20 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


結果


結果をFig.1に示します。
赤で示したのが通常のダイヤモンドの状態密度です。フェルミ準位はバンドギャップの中にあります。緑と青で示したのが、それぞれホウ素と窒素を5%置換したダイヤモンドの状態密度です。これらは、状態密度の形状がほとんど変化せず、フェルミ準位の位置がずれているだけだと分かります。
これは、ホウ素(窒素)は、炭素と比べてか電子の数が1個少ない(多い)からです。半導体では、このように不純物をドープした際にバンド構造がほとんど変わらず、価電子数の差に応じてフェルミ準位が変化するだけという事が多いようです。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR CPA 状態密度 DOS 半導体 

AkaiKKRとecaljでCuGaTe2 その2

AkaiKKRとecaljでCuGaTe2 その1ではAkaiKKR(machikaneyama)を用いてCuGaTe2の状態密度を計算しました。今回は、さらにecaljを用いて、LDAとGW近似の計算を行いました。その結果、AkaiKKRがCuGaTe2のバンドギャップを過小評価するのは、LDA/GGAに共通する問題であろう事、また、ecaljを用いてGW近似を適用すると、バンドギャップが改善されることが分かりました。

AkaiKKRLDAGW
Bandgap~0.4 eV0.1586 eV1.0962 eV
table.1: AkaiKKR(GGA), ecalj(LDA), ecalj(GW近似)のそれぞれのバンドギャップ



CuGaTe2のバンドギャップ問題


AkaiKKRとecaljでCuGaTe2 その1では、AkaiKKR(machikaneyama)を用いてCuGaTe2の状態密度を計算しました。その結果、得られたバンドギャップの大きさは過小評価となりました。これがLDA/GGAに起因する問題ならば、ecaljのLDA計算でも過小評価となり、かつ、GW近似を適用することで改善が見られるはずです。そこで今回は、LDAとGW近似の両方でCuGaTe2の計算を行います。

ecaljの結晶構造ファイル


ecaljの実行手順(LDA計算)ecaljの実行手順(GW近似)で書いたとおりecaljのために最低限必要なのは結晶構造ファイル ctrls.cugate2 だけです。ecaljの結晶構造ファイルは、基本並進ベクトルで格子を指定し、直交座標系で原子位置を指定する必要があります。

AkaiKKRではブラベ格子の種類は「ブラベ格子のキーワード」を指定する方法と「基本並進ベクトル」を指定する方法の2種類があります(参考: AkaiKKRのブラベ格子AkaiKKRの基本並進ベクトル その1AkaiKKRの基本並進ベクトル その2)。また、原子位置も「直交座標系」で与える方法と「分率座標系(fractional coordinate)」で与える方法の2種類あります。

もしもAkaiKKRの入力ファイルが、ブラベ格子のキーワードを利用している、あるいは、原子位置が分率座標系で与えられている場合、ecaljの入力フォーマットに合うように直す必要があります。AkaiKKRの入力ファイルからecaljの入力ファイルを作る方法としては、いったんcifファイルなどを経由してVESTAを利用する方法が正攻法でしょう(参考: VESTAでAkaiKKRのための基本並進ベクトル)。

しかし、もしもすでにAkaiKKR用の入力ファイルがあるのなら、ワンステップだけとはいえ、余計な手間がかかっている感があります。幸いにして、AkaiKKRの出力には、基本並進ベクトルと直交座標系での原子位置が出力されるので、今回はこれらを利用してecaljのための入力ファイルを作ります。

具体的には、AkaiKKRとecaljでCuGaTe2 その1の出力結果から、以下の基本並進ベクトルと原子位置の部分を抜き出します。

   primitive translation vectors
a=( -0.50000 0.50000 0.99600)
b=( 0.50000 -0.50000 0.99600)
c=( 0.50000 0.50000 -0.99600)


   atoms in the unit cell
position= 0.23703000 0.25000000 0.24900000 type=Te
position= 0.76297000 0.75000000 0.24900000 type=Te
position= 0.75000000 0.23703000 0.74700000 type=Te
position= 0.25000000 0.76297000 0.74700000 type=Te
position= 0.50000000 0.50000000 0.00000000 type=Ga
position= 0.50000000 0.00000000 0.49800000 type=Ga
position= 0.00000000 0.00000000 0.00000000 type=Cu
position= 0.00000000 0.50000000 0.49800000 type=Cu
position= 0.75000000 0.25000000 0.24900000 type=Es1
position= 0.25000000 0.75000000 0.24900000 type=Es1
position= 0.75000000 0.75000000 0.74700000 type=Es1
position= 0.25000000 0.25000000 0.74700000 type=Es1
position= 0.00000000 0.00000000 0.49800000 type=Es2
position= 0.50000000 0.50000000 0.49800000 type=Es2
position= 0.00000000 0.50000000 0.00000000 type=Es2
position= 0.50000000 0.00000000 0.00000000 type=Es2


結局CuGaTe2の結晶構造ファイルは、以下のようになります。

STRUC   ALAT=11.5388
PLAT=-1/2 1/2 0.99600
1/2 -1/2 0.99600
1/2 1/2 -0.99600
SITE ATOM=Te POS=0.23703000 0.25000000 0.24900000
ATOM=Te POS=0.76297000 0.75000000 0.24900000
ATOM=Te POS=0.75000000 0.23703000 0.74700000
ATOM=Te POS=0.25000000 0.76297000 0.74700000
ATOM=Ga POS=0.50000000 0.50000000 0.00000000
ATOM=Ga POS=0.50000000 0.00000000 0.49800000
ATOM=Cu POS=0.00000000 0.00000000 0.00000000
ATOM=Cu POS=0.00000000 0.50000000 0.49800000


結果


LDAを用いた結果、ワンショットGW近似を用いた結果、および、前回計算したAkaiKKRのGGAの結果を示します。

CuGaTe2-GW.png
Fig.1: QSGWによるCuGaTe2の状態密度

CuGaTe2-LDA.png
Fig.2: LDAによるCuGaTe2の状態密度

CuGaTe2DOS.png
Fig.3: GGA(AkaiKKR)によるCuGaTe2の状態密度


まず、大まかに見れば状態密度の形状はどれもほとんど同じであることが分かります。ただし、バンドギャップができるはずの部分では、LDAやAkaiKKR(GGA)の結果は、GW近似の結果と比較してギャップエネルギーを過小評価していることが分かります。

ecaljのログファイルには、バンドギャップの値が出力されます。前回のAkaiKKRの値とあわせて比較するとTable.1のようになりました。

ただし、LDA/GGAはバンドギャップを過小評価するという以上のことを言おうと思うと、微妙な議論になるかもしれません。
結晶構造と格子定数を合わせてあるとはいえ、細かい設定は異なります。AkaiKKRではpbe(GGA)を、ecaljのLDAはvwnを使っている点。AkaiKKRはフルポテンシャルでない点、などです。実際、空孔を入れたり原子球近似(ASA)を使ったりすることでギャップの値が改善されるということは、バンドギャップの値がポテンシャルの形状に影響を受けるはずだということです(参考: AkaiKKRでダイヤモンド型構造半導体)。

LDA/GGAのバンドギャップ過小評価は、第一原理計算パッケージ全般についてまわる問題だけあって、私には結論が出せませんが、仮にバンドギャップが正しい値を示さなくても、バンド構造や全エネルギーに関して議論を行うことは、何らかの意味があるかもしれません。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR ecalj LDA GGA GW近似 QSGW 半導体 バンドギャップ 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ