Scilabで化学反応

私の練習のためにScilabで微分方程式による物理現象のモデル化(PDF)の問題を順番に解いてきました。最早、基本的な常微分方程式ならその物理的な背景を理解していなくてもルーチンワークでプログラムを書くだけで計算できてしまいます。

今回は、可逆反応と非可逆反応の反応が進む様子をシミュレーションします。

001_20130802112714a35.jpg

Fig.1: 化学反応は反応物質の数に依存して反応速度が異なる。また、可逆反応と非可逆反応では反応速度を表す微分方程式の形が異なる。画像は(c)GLOBALHAWK90



非可逆反応


非可逆な化学反応とは、反応する化学物質
非可逆反応の微分方程式とその解析解をプロットするScilabプログラムを作成します。

常微分方程式:
\frac{\mathrm{d}x}{\mathrm{d}t} = k(a-x)(b-x)

解析解:
x(t) = \begin{cases}ab\frac{\exp(gt) -\exp(-gt)}{a\exp(gt)-b\exp(-gt)} & (a > b) \\a - \frac{1}kt-\frac{1}{a}} & (a = b)\end{cases}

プログラムはunreversible_sce.txtです。

002_201308021127143ec.png

Fig.2: 非可逆反応の計算結果。


clear;

// ************************************
//
// 共通部分
//
// ************************************
// *** 入力パラメータ ***
a = 1;
k1 = input("k1 = ");
k2 = input("k2 = ");
// 時間ベクトル
T = linspace(0,10);

// ************************************
//
// 数値解
//
// ************************************
// 解くべき微分方程式
function dx = unreversible(t,x)
dx = k1 * (a - x) ^ 2 - k2 * x;
endfunction
// 初期値
x0 = 0;
// 微分方程式の数値解
X = ode(x0,0,T,unreversible);

// ************************************
//
// 解析解
//
// ************************************
b1 = (2 * a + k2 / k1 + sqrt(4 * a * k2 / k1 + (k2 / k1) ^ 2)) / 2;
b2 = (2 * a + k2 / k1 - sqrt(4 * a * k2 / k1 + (k2 / k1) ^ 2)) / 2;
d = sqrt(4 * a * k2 / k1 + (k2 / k1) ^ 2);
Xa = b2 * (exp(k1 * d * T) - 1) ./ (exp(k1 * d * T) - b2 / b1);

// ************************************
//
// プロット
//
// ************************************
plot(T,X,'or');
plot(T,Xa,'-g');
xtitle(strcat(["Chemical Reaction: ","a = ",string(a),", k1 = ",string(k1),", k2 = ",string(k2)]));
xlabel("$t [s]$");
ylabel("$N_x$");
legend(["Numerical","Analytical"],4);


可逆反応


可逆反応の微分方程式と解析解をプロットするScilabプログラムを作成します。

常微分方程式:
\frac{\mathrm{d}x}{\mathrm{d}t} = k_1 (a-x)^2 - k_2 x

解析解:
x(t) = b_2 \frac{\exp(k_1 \Delta b t)-1}{\exp(k_1 \Delta b t) - \frac{b_2}{b_1}}

ただし
b_1 = \frac{2a+\frac{k_2}{k_1} + \sqrt{4a\frac{k_2}{k_1}+\left(\frac{k_2}{k_1} \right)^2}}{2}

b_2 = \frac{2a+\frac{k_2}{k_1} - \sqrt{4a\frac{k_2}{k_1}+\left(\frac{k_2}{k_1} \right)^2}}{2}

\Delta b = b1 - b2 = \sqrt{4a\frac{k_2}{k_1}+\left(\frac{k_2}{k_1} \right)^2}


プログラムはbalanced_sce.txtです。

003_20130802112714957.png

Fig.3: 可逆反応の計算結果。


clear;

// ************************************
//
// 共通部分
//
// ************************************
// *** 入力パラメータ ***
a = 1;
b = input("b = ");
k = input("k = ");
// 時間ベクトル
T = linspace(0,10);

// ************************************
//
// 数値解
//
// ************************************
// 解くべき微分方程式
function dx = balanced(t,x)
dx = k * (a - x) * (b - x);
endfunction
// 初期値
x0 = 0;
// 微分方程式の数値解
X = ode(x0,0,T,balanced);

// ************************************
//
// 解析解
//
// ************************************
g = (a - b) / 2 * k;
if a == b then
Xa = a - 1 ./ (k .* T + 1 / a);
else
Xa = a * b * (exp(g * T) - exp(- g * T)) ./ (a * exp(g * T) - b * exp(- g * T));
end

// ************************************
//
// プロット
//
// ************************************
plot(T,X,'or');
plot(T,Xa,'-g');
xtitle(strcat(["Chemical Reaction: ","a = ",string(a),", b = ",string(b),", k = ",string(k)]));
xlabel("$t [s]$");
ylabel("$N_c$");
legend(["Numerical","Analytical"],4);


常微分方程式の数値解法


以下の通り、これまで微分方程式による物理現象のモデル化(PDF)に倣って、Scilabで常微分方程式の数値解法を扱ってきました。



2013年の更新はこれにて終了です。特にひねりは無いですが、来年は量子力学の問題から行こうと思います。
ただし、量子力学以降は単純な常微分方程式ではありません。常微分方程式は(ある意味何も考えずに)常微分方程式ソルバodeを使うだけで計算できてしまいますが、偏微分方程式は全自動で解いてくれるソルバが存在しないので少し考える必要があります。

元PDFには、(遍微分方程式ではない)普通の常微分方程式の問題として電子回路関係が残っていますが、LTspiceを使えば極めて簡単に計算できる回路をわざわざプログラム書きたくないという思いがあり、やる気がおきないです。

それでは、良いお年を。(と、予約投稿なので、書いている今はまだ7月なのですが。)

参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 常微分方程式 ode 化学反応 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ