全エネルギーって何だよ?

第一原理計算では、全エネルギーという言葉をよく耳にします。
全エネルギーは、多くの第一原理計算において、最も重要な出力であるにもかかわらず、その物理的意味は、一見すると分かりにくいです。今回は、そんな全エネルギーについて書きます。


001_2015091918355521f.png

Fig.1: 全エネルギーと凝集エネルギーの違いの模式図。この例では六方最密充填(hcp)構造よりも面心立方(fcc)構造の方が熱力学的に安定である。全エネルギーの基準点は、物理的な意味がないため、その実態がイメージしにくい。しかし、相対的な熱力学的安定性を議論するためには問題なく使える。



自由エネルギー


熱力学的な安定性は、自由エネルギーを用いて議論されます。ギブスの自由エネルギーは以下の式で表されます。
\begin{equation}
G(P, T) = E^{coh} + PV - TS
\end{equation}
ここでGはギブスの自由エネルギー、Ecohが凝集エネルギー、Pが圧力、Vが体積、Tが温度、Sがエントロピーです。これらを実際に計算して比較することにより熱力学的な安定性を議論することができます。
例えば、銅の結晶構造は常温常圧で面心立方構造(fcc)を取り、六方最密充填構造(hcp)ではありません。ギブスの自由エネルギーとの関係でいうと、fcc銅のギブスの自由エネルギーは、hcp銅の自由エネルギーよりも低いという事です。

さて、常温常圧ではT= 300 K, P = 1 barなのですが、簡単のためにT = 0 K, P = 0 barとしてしまうと、ギブスの自由エネルギーGは単純に凝集エネルギーEcohと同じになってしまいます。

凝集エネルギーと全エネルギー


凝集エネルギーとは、孤立原子のエネルギーを基準としたときの凝集状態のエネルギーのことです。別の言い方をするとfcc銅の凝集エネルギーは、fcc構造に結晶化した銅の原子を引き剥がして行って、孤立原子になるまでに必要とされるエネルギーという事になります。

これに対して、第一原理計算における全エネルギーも凝集状態のエネルギーであることは同じですが、その基準となるエネルギーに物理的な意味がない点が異なります。

冒頭に挙げたFig.1は、この事を模式的に表した図です。
Fig.1の例では、銅のようにfcc構造の方がhcp構造よりも安定な固体をイメージしています。

AkaiKKRでの計算


それでは実際にAkaiKKR(machikaneyama)で、fccとhcpの銅の全エネルギーを計算してみます。本当は格子定数やk点の数などに注意を払いながら計算しなければいけないのですが、以下のような簡単な入力ファイルを使う事にします。(参考: AkaiKKRで銅の格子定数)

c----------------------Cu------------------------------------
go data/fccCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


c----------------------Cu------------------------------------
go data/hcpCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
1/3a 2/3b 1/2c Cu
c------------------------------------------------------------


実際に計算するとfcc構造の全エネルギーは-3304.7481651 Ryとなり、hcp構造の全エネルギーは-6609.4943602 Ryと表示されます。hcp構造は計算セルに2個の原子を持っているので、原子一つ分なら2で割って -3304.7471801 Ryとなります。

これらの値は、それぞれを別々に見せられても、その値自体に物理的な意味は持っていません。しかしながら大小関係を比較することにより結晶構造の安定性を議論することができます。今回の場合は -3304.7481651 < -3304.7471801 なのでfcc構造の方が安定であるという事がわかります。

結晶構造の違いの他にも、格子定数や軸比(c/aなど)、内部自由度など色々なものが全エネルギーの比較から可能になります。

補足: 有限温度と有限圧力


ギブスの自由エネルギーを計算する際に、温度と圧力の効果を無視して凝集エネルギーとの比較だけを行いましたが、有限温度や有限圧力の効果も第一原理的に取り入れることは可能です。

実際、圧力の効果PVは簡単に取り入れられることがすぐに分かります。
有限温度の効果は、色々な近似を持ち込めば、何らかの値を出すことは可能です。AkaiKKRで金属の熱物性は、デバイ模型を用いた一例です。

関連エントリ




参考URL




参考文献/使用機器




フィードバック


にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 全エネルギー 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMPシュレディンガー方程式固有値問題井戸型ポテンシャル2SC1815TeX結晶磁気異方性OPA2277非線型方程式ソルバフラクタルFSM固定スピンモーメントc/agnuplotPGA全エネルギーfccマンデルブロ集合縮退正規分布キーボード初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルRealforceフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線凡例軸ラベル線種シンボルトラックボールグラフの分割MAS830LPIC16F785トランス入出力CK1026PC直流解析パラメータ・モデル等価回路モデル不規則局所モーメント関数フィッティング日本語ヒストグラムTS-112ExcelGimp円周率TS-110LMC662片対数グラフ三次元specx.fifortUbuntu文字列疎行列不純物問題ジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式AACircuit熱拡散方程式HiLAPW両対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE最小二乗法

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ