全エネルギーって何だよ?

第一原理計算では、全エネルギーという言葉をよく耳にします。
全エネルギーは、多くの第一原理計算において、最も重要な出力であるにもかかわらず、その物理的意味は、一見すると分かりにくいです。今回は、そんな全エネルギーについて書きます。


001_2015091918355521f.png

Fig.1: 全エネルギーと凝集エネルギーの違いの模式図。この例では六方最密充填(hcp)構造よりも面心立方(fcc)構造の方が熱力学的に安定である。全エネルギーの基準点は、物理的な意味がないため、その実態がイメージしにくい。しかし、相対的な熱力学的安定性を議論するためには問題なく使える。



自由エネルギー


熱力学的な安定性は、自由エネルギーを用いて議論されます。ギブスの自由エネルギーは以下の式で表されます。
\begin{equation}
G(P, T) = E^{coh} + PV - TS
\end{equation}
ここでGはギブスの自由エネルギー、Ecohが凝集エネルギー、Pが圧力、Vが体積、Tが温度、Sがエントロピーです。これらを実際に計算して比較することにより熱力学的な安定性を議論することができます。
例えば、銅の結晶構造は常温常圧で面心立方構造(fcc)を取り、六方最密充填構造(hcp)ではありません。ギブスの自由エネルギーとの関係でいうと、fcc銅のギブスの自由エネルギーは、hcp銅の自由エネルギーよりも低いという事です。

さて、常温常圧ではT= 300 K, P = 1 barなのですが、簡単のためにT = 0 K, P = 0 barとしてしまうと、ギブスの自由エネルギーGは単純に凝集エネルギーEcohと同じになってしまいます。

凝集エネルギーと全エネルギー


凝集エネルギーとは、孤立原子のエネルギーを基準としたときの凝集状態のエネルギーのことです。別の言い方をするとfcc銅の凝集エネルギーは、fcc構造に結晶化した銅の原子を引き剥がして行って、孤立原子になるまでに必要とされるエネルギーという事になります。

これに対して、第一原理計算における全エネルギーも凝集状態のエネルギーであることは同じですが、その基準となるエネルギーに物理的な意味がない点が異なります。

冒頭に挙げたFig.1は、この事を模式的に表した図です。
Fig.1の例では、銅のようにfcc構造の方がhcp構造よりも安定な固体をイメージしています。

AkaiKKRでの計算


それでは実際にAkaiKKR(machikaneyama)で、fccとhcpの銅の全エネルギーを計算してみます。本当は格子定数やk点の数などに注意を払いながら計算しなければいけないのですが、以下のような簡単な入力ファイルを使う事にします。(参考: AkaiKKRで銅の格子定数)

c----------------------Cu------------------------------------
go data/fccCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


c----------------------Cu------------------------------------
go data/hcpCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
1/3a 2/3b 1/2c Cu
c------------------------------------------------------------


実際に計算するとfcc構造の全エネルギーは-3304.7481651 Ryとなり、hcp構造の全エネルギーは-6609.4943602 Ryと表示されます。hcp構造は計算セルに2個の原子を持っているので、原子一つ分なら2で割って -3304.7471801 Ryとなります。

これらの値は、それぞれを別々に見せられても、その値自体に物理的な意味は持っていません。しかしながら大小関係を比較することにより結晶構造の安定性を議論することができます。今回の場合は -3304.7481651 < -3304.7471801 なのでfcc構造の方が安定であるという事がわかります。

結晶構造の違いの他にも、格子定数や軸比(c/aなど)、内部自由度など色々なものが全エネルギーの比較から可能になります。

補足: 有限温度と有限圧力


ギブスの自由エネルギーを計算する際に、温度と圧力の効果を無視して凝集エネルギーとの比較だけを行いましたが、有限温度や有限圧力の効果も第一原理的に取り入れることは可能です。

実際、圧力の効果PVは簡単に取り入れられることがすぐに分かります。
有限温度の効果は、色々な近似を持ち込めば、何らかの値を出すことは可能です。AkaiKKRで金属の熱物性は、デバイ模型を用いた一例です。

関連エントリ




参考URL




参考文献/使用機器




フィードバック


にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 全エネルギー 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSスイッチング回路定電流PDS5022分散関係半導体シェルスクリプトレベルシフト乱数HP6632AR6452Aブレッドボード温度解析トランジスタ技術可変抵抗I2Cバンドギャップ数値積分セミナー確率論反強磁性バンド構造偏微分方程式非線形方程式ソルバ絶縁熱設計A/DコンバータシュミットトリガPWscfマフィンティン半径フォトカプラ三端子レギュレータLM358カオスGW近似LEDISO-I2C補間74HC4053TL431アナログスイッチサーボ数値微分発振回路カレントミラーPC817CUSB直流動作点解析標準ロジックアセンブラVESTAbzqlty電子負荷パラメトリック解析2ちゃんねるチョッパアンプ単振り子量子力学BSch開発環境トレーナーバトルFFTスーパーリーグ基本並進ベクトルブラべ格子LDAイジング模型ポケモンGOQuantumESPRESSOキュリー温度Quantum_ESPRESSO仮想結晶近似Maxima六方最密充填構造熱伝導スピン軌道相互作用抵抗失敗談相対論GGA繰り返しラプラス方程式VCAコバルトgfortran状態方程式不規則合金スイッチト・キャパシタTLP621ランダムウォークQSGWFETewidth最適化位相図SMPcygwinスレーターポーリング曲線シュレディンガー方程式固有値問題条件分岐Writer509awkデータロガーマントル自動計測ガイガー管詰め回路MCU三角波ダイヤモンド過渡解析ハーフメタルubuntu格子比熱UPSQNAPFXA-7020ZR井戸型ポテンシャルテスタ熱力学LM555平均場近似UbuntuNE555最大値第一原理計算最小値TLP521フェルミ面ZnOCIF差し込みグラフ起電力ゼーベック係数TLP552fsolveスーパーセルブラウン運動OpenMPxcrysden不純物問題擬ポテンシャルハイパーリーグgnuplotc/a全エネルギー状態図multiplot合金P-10磁気モーメントcif2cellPWgui半金属BaOOPA2277ウルツ鉱構造edelt2SC1815リジッドバンド模型ナイキスト線図岩塩構造スワップ領域PGA二相共存重積分ノコギリ波ルチル構造CapSenseSICデバイ模型quantumESPRESSOフィルタフォノン電荷密度Excel円周率初期値ヒストグラムGimpシンボル凡例線種interp1不規則局所モーメントウィグナーザイツ胞縮退疎行列文字列PvP入出力軸ラベルグラフの分割specx.fifort正規分布マテリアルデザインヒストグラム確率論等高線ジバニャン方程式境界条件連立一次方程式両対数グラフ片対数グラフHiLAPW熱拡散方程式Crank-Nicolson法陰解法化学反応三次元トラックボールMAS830LCK1026PC直流解析TS-112TS-110トランスPIC16F785MBEEAGLEAACircuit固定スピンモーメントLMC662FSM等価回路モデルパラメータ・モデルフラクタルマンデルブロ集合L10構造fcc面心立方構造クーロン散乱キーボードRealforce最小二乗法日本語関数フィッティングTeX非線型方程式ソルバ結晶磁気異方性負帰還安定性

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ