全エネルギーって何だよ?

第一原理計算では、全エネルギーという言葉をよく耳にします。
全エネルギーは、多くの第一原理計算において、最も重要な出力であるにもかかわらず、その物理的意味は、一見すると分かりにくいです。今回は、そんな全エネルギーについて書きます。


001_2015091918355521f.png

Fig.1: 全エネルギーと凝集エネルギーの違いの模式図。この例では六方最密充填(hcp)構造よりも面心立方(fcc)構造の方が熱力学的に安定である。全エネルギーの基準点は、物理的な意味がないため、その実態がイメージしにくい。しかし、相対的な熱力学的安定性を議論するためには問題なく使える。



自由エネルギー


熱力学的な安定性は、自由エネルギーを用いて議論されます。ギブスの自由エネルギーは以下の式で表されます。
\begin{equation}
G(P, T) = E^{coh} + PV - TS
\end{equation}
ここでGはギブスの自由エネルギー、Ecohが凝集エネルギー、Pが圧力、Vが体積、Tが温度、Sがエントロピーです。これらを実際に計算して比較することにより熱力学的な安定性を議論することができます。
例えば、銅の結晶構造は常温常圧で面心立方構造(fcc)を取り、六方最密充填構造(hcp)ではありません。ギブスの自由エネルギーとの関係でいうと、fcc銅のギブスの自由エネルギーは、hcp銅の自由エネルギーよりも低いという事です。

さて、常温常圧ではT= 300 K, P = 1 barなのですが、簡単のためにT = 0 K, P = 0 barとしてしまうと、ギブスの自由エネルギーGは単純に凝集エネルギーEcohと同じになってしまいます。

凝集エネルギーと全エネルギー


凝集エネルギーとは、孤立原子のエネルギーを基準としたときの凝集状態のエネルギーのことです。別の言い方をするとfcc銅の凝集エネルギーは、fcc構造に結晶化した銅の原子を引き剥がして行って、孤立原子になるまでに必要とされるエネルギーという事になります。

これに対して、第一原理計算における全エネルギーも凝集状態のエネルギーであることは同じですが、その基準となるエネルギーに物理的な意味がない点が異なります。

冒頭に挙げたFig.1は、この事を模式的に表した図です。
Fig.1の例では、銅のようにfcc構造の方がhcp構造よりも安定な固体をイメージしています。

AkaiKKRでの計算


それでは実際にAkaiKKR(machikaneyama)で、fccとhcpの銅の全エネルギーを計算してみます。本当は格子定数やk点の数などに注意を払いながら計算しなければいけないのですが、以下のような簡単な入力ファイルを使う事にします。(参考: AkaiKKRで銅の格子定数)

c----------------------Cu------------------------------------
go data/fccCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


c----------------------Cu------------------------------------
go data/hcpCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
1/3a 2/3b 1/2c Cu
c------------------------------------------------------------


実際に計算するとfcc構造の全エネルギーは-3304.7481651 Ryとなり、hcp構造の全エネルギーは-6609.4943602 Ryと表示されます。hcp構造は計算セルに2個の原子を持っているので、原子一つ分なら2で割って -3304.7471801 Ryとなります。

これらの値は、それぞれを別々に見せられても、その値自体に物理的な意味は持っていません。しかしながら大小関係を比較することにより結晶構造の安定性を議論することができます。今回の場合は -3304.7481651 < -3304.7471801 なのでfcc構造の方が安定であるという事がわかります。

結晶構造の違いの他にも、格子定数や軸比(c/aなど)、内部自由度など色々なものが全エネルギーの比較から可能になります。

補足: 有限温度と有限圧力


ギブスの自由エネルギーを計算する際に、温度と圧力の効果を無視して凝集エネルギーとの比較だけを行いましたが、有限温度や有限圧力の効果も第一原理的に取り入れることは可能です。

実際、圧力の効果PVは簡単に取り入れられることがすぐに分かります。
有限温度の効果は、色々な近似を持ち込めば、何らかの値を出すことは可能です。AkaiKKRで金属の熱物性は、デバイ模型を用いた一例です。

関連エントリ




参考URL




参考文献/使用機器




フィードバック


にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 全エネルギー 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSPDS5022定電流スイッチング回路確率論半導体分散関係シェルスクリプト乱数レベルシフトHP6632Aトランジスタ技術温度解析可変抵抗I2CブレッドボードR6452A反強磁性数値積分バンド構造バンドギャップセミナー絶縁偏微分方程式非線形方程式ソルバPWscf熱設計シュミットトリガLED三端子レギュレータ順列・組み合わせLM358GW近似カオスマフィンティン半径ISO-I2CフォトカプラA/Dコンバータ発振回路74HC4053数値微分直流動作点解析サーボPC817CアナログスイッチUSB補間TL431カレントミラーbzqltyVESTA電子負荷イジング模型LDA開発環境ブラべ格子FFT量子力学2ちゃんねるチョッパアンプ単振り子ポケモンGOスーパーリーグ標準ロジックQuantumESPRESSO基本並進ベクトルパラメトリック解析アセンブラBSchトレーナーバトル抵抗Maximaラプラス方程式失敗談状態方程式SMPキュリー温度スイッチト・キャパシタ位相図繰り返し熱伝導gfortranコバルトewidthTLP621不規則合金ランダムウォーク六方最密充填構造FET最適化相対論スピン軌道相互作用QSGWQuantum_ESPRESSOGGAVCA仮想結晶近似スレーターポーリング曲線cygwinZnOシュレディンガー方程式フォノンNE555詰め回路条件分岐固有値問題最大値ダイヤモンドガイガー管TLP552マントル自動計測データロガーQNAPUPSCIF井戸型ポテンシャルMCUxcrysdenゼーベック係数格子比熱最小値LM555フェルミ面fsolve過渡解析差し込みグラフ三角波起電力スーパーセル第一原理計算ブラウン運動FXA-7020ZROpenMPTLP521Ubuntuハーフメタル熱力学Writer509ubuntu平均場近似テスタawkLMC662フィルタMAS830LCK1026トランスPIC16F785AACircuit負帰還安定性ハイパーリーグCapSenseナイキスト線図ノコギリ波2SC1815EAGLEPvPP-10OPA2277MBEPGA入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分不純物問題擬ポテンシャル状態図cif2cellPWguiSIC二相共存リジッドバンド模型edeltquantumESPRESSOスワップ領域ルチル構造ウルツ鉱構造BaO岩塩構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ