全エネルギーって何だよ?

第一原理計算では、全エネルギーという言葉をよく耳にします。
全エネルギーは、多くの第一原理計算において、最も重要な出力であるにもかかわらず、その物理的意味は、一見すると分かりにくいです。今回は、そんな全エネルギーについて書きます。


001_2015091918355521f.png

Fig.1: 全エネルギーと凝集エネルギーの違いの模式図。この例では六方最密充填(hcp)構造よりも面心立方(fcc)構造の方が熱力学的に安定である。全エネルギーの基準点は、物理的な意味がないため、その実態がイメージしにくい。しかし、相対的な熱力学的安定性を議論するためには問題なく使える。



自由エネルギー


熱力学的な安定性は、自由エネルギーを用いて議論されます。ギブスの自由エネルギーは以下の式で表されます。
\begin{equation}
G(P, T) = E^{coh} + PV - TS
\end{equation}
ここでGはギブスの自由エネルギー、Ecohが凝集エネルギー、Pが圧力、Vが体積、Tが温度、Sがエントロピーです。これらを実際に計算して比較することにより熱力学的な安定性を議論することができます。
例えば、銅の結晶構造は常温常圧で面心立方構造(fcc)を取り、六方最密充填構造(hcp)ではありません。ギブスの自由エネルギーとの関係でいうと、fcc銅のギブスの自由エネルギーは、hcp銅の自由エネルギーよりも低いという事です。

さて、常温常圧ではT= 300 K, P = 1 barなのですが、簡単のためにT = 0 K, P = 0 barとしてしまうと、ギブスの自由エネルギーGは単純に凝集エネルギーEcohと同じになってしまいます。

凝集エネルギーと全エネルギー


凝集エネルギーとは、孤立原子のエネルギーを基準としたときの凝集状態のエネルギーのことです。別の言い方をするとfcc銅の凝集エネルギーは、fcc構造に結晶化した銅の原子を引き剥がして行って、孤立原子になるまでに必要とされるエネルギーという事になります。

これに対して、第一原理計算における全エネルギーも凝集状態のエネルギーであることは同じですが、その基準となるエネルギーに物理的な意味がない点が異なります。

冒頭に挙げたFig.1は、この事を模式的に表した図です。
Fig.1の例では、銅のようにfcc構造の方がhcp構造よりも安定な固体をイメージしています。

AkaiKKRでの計算


それでは実際にAkaiKKR(machikaneyama)で、fccとhcpの銅の全エネルギーを計算してみます。本当は格子定数やk点の数などに注意を払いながら計算しなければいけないのですが、以下のような簡単な入力ファイルを使う事にします。(参考: AkaiKKRで銅の格子定数)

c----------------------Cu------------------------------------
go data/fccCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


c----------------------Cu------------------------------------
go data/hcpCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
1/3a 2/3b 1/2c Cu
c------------------------------------------------------------


実際に計算するとfcc構造の全エネルギーは-3304.7481651 Ryとなり、hcp構造の全エネルギーは-6609.4943602 Ryと表示されます。hcp構造は計算セルに2個の原子を持っているので、原子一つ分なら2で割って -3304.7471801 Ryとなります。

これらの値は、それぞれを別々に見せられても、その値自体に物理的な意味は持っていません。しかしながら大小関係を比較することにより結晶構造の安定性を議論することができます。今回の場合は -3304.7481651 < -3304.7471801 なのでfcc構造の方が安定であるという事がわかります。

結晶構造の違いの他にも、格子定数や軸比(c/aなど)、内部自由度など色々なものが全エネルギーの比較から可能になります。

補足: 有限温度と有限圧力


ギブスの自由エネルギーを計算する際に、温度と圧力の効果を無視して凝集エネルギーとの比較だけを行いましたが、有限温度や有限圧力の効果も第一原理的に取り入れることは可能です。

実際、圧力の効果PVは簡単に取り入れられることがすぐに分かります。
有限温度の効果は、色々な近似を持ち込めば、何らかの値を出すことは可能です。AkaiKKRで金属の熱物性は、デバイ模型を用いた一例です。

関連エントリ




参考URL




参考文献/使用機器




フィードバック


にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 全エネルギー 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPAPIC強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースecalj定電流スイッチング回路PDS5022DOS半導体乱数シェルスクリプトレベルシフトHP6632Aブレッドボード分散関係温度解析トランジスタ技術R6452A可変抵抗I2Cセミナー確率論反強磁性非線形方程式ソルバ絶縁偏微分方程式バンド構造熱設計数値積分バンドギャップカオスA/DコンバータフォトカプラシュミットトリガGW近似LEDLM358ISO-I2C三端子レギュレータ数値微分サーボ直流動作点解析カレントミラーマフィンティン半径TL431PC817C発振回路74HC4053USBアナログスイッチbzqltyFFTチョッパアンプ2ちゃんねる補間量子力学開発環境電子負荷標準ロジックパラメトリック解析アセンブラ基本並進ベクトルブラべ格子単振り子BSchLDAイジング模型繰り返しMaximaキュリー温度位相図状態方程式失敗談スピン軌道相互作用六方最密充填構造相対論FET抵抗コバルト不規則合金TLP621ewidthGGAQSGWgfortranランダムウォークラプラス方程式スイッチト・キャパシタcygwin熱伝導SMPスレーターポーリング曲線三角波格子比熱LM555条件分岐TLP552MCUNE555UPSTLP521QNAPマントルテスタFXA-7020ZR過渡解析詰め回路ガイガー管ダイヤモンド自動計測Writer509データロガー固有値問題VESTAスーパーセルOpenMP差し込みグラフ平均場近似起電力awk仮想結晶近似VCAubuntufsolveブラウン運動熱力学第一原理計算井戸型ポテンシャルシュレディンガー方程式面心立方構造fccウィグナーザイツ胞interp12SC1815L10構造非線型方程式ソルバFSMキーボードTeX結晶磁気異方性初期値OPA2277化学反応等高線ジバニャン方程式ヒストグラム確率論三次元フィルタRealforcePGAフェルミ面正規分布固定スピンモーメント全エネルギースワップ領域リジッドバンド模型edeltquantumESPRESSOルチル構造岩塩構造二相共存ZnOウルツ鉱構造BaOフォノンデバイ模型multiplotgnuplotc/aノコギリ波合金クーロン散乱ハーフメタル半金属CapSenseマンデルブロ集合マテリアルデザインSICGimpCK1026MAS830L円周率トランスPIC16F785凡例線種シンボルLMC662ヒストグラム不規則局所モーメント文字列疎行列TS-110TS-112Excel直流解析等価回路モデル入出力トラックボールPC軸ラベルAACircuitP-10フラクタル境界条件連立一次方程式Ubuntuifortパラメータ・モデルspecx.f関数フィッティング最小二乗法Crank-Nicolson法陰解法日本語EAGLEMBEグラフの分割負帰還安定性ナイキスト線図熱拡散方程式HiLAPW両対数グラフ片対数グラフ縮退

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ