AkaiKKRで仮想結晶近似

ecaljで仮想結晶近似ecaljでB-dopedダイヤモンドでは、原子番号に小数を指定することによって合金の計算を行いました。AkaiKKR(machikaneyama)ではCPAで合金の計算が出来るので出番はなさそうだと思っていましたが、原子番号の部分に小数を指定できるということです。

bccFeX-float.png

Fig.1: 強磁性鉄中の不純物元素の磁気モーメント


AkaiKKRで不純物の磁気モーメントでは強磁性の鉄の中に、鉄のバンド構造に影響を与えないほど微量の不純物元素を導入したときの不純物元素がもつ磁気モーメントの大きさを計算しました。そして周期表でマンガンよりも左の元素では磁気モーメントが負(鉄の磁気モーメントと反並行)となり、鉄よりも右の元素では正になることが分かりました。

そこで今回は、その中間の原子番号を持つ仮想的な元素ではどうなるのかを調べるために原子番号に非整数を用いて計算を行ってみました。結果はFig.1のようになりました。非整数の原子番号を持つ仮想的な原子の磁気モーメントが、現実の物性と比較してどういう意味があるのかは分かりませんが、思った以上にきれいなトレンドを示す結果になりました。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 仮想結晶近似 VCA 強磁性 

ecaljでB-dopedダイヤモンド

ecaljと仮想結晶近似(VCA)を用いて、ダイヤモンドの炭素原子を5%ホウ素に置換したホウ素ドープダイヤモンドの電子構造を計算しました。結果は、AkaiKKRでB(N)-dopedダイヤモンドAkaiKKRでリジッドバンド模型もどきの結果と調和的で、純粋なダイヤモンドは絶縁体、ホウ素をドープしたダイヤモンドは金属的なバンド構造となりました。

bandplot-bdia-vca.png
Fig.1: ダイヤモンドとホウ素をドープしたダイヤモンドのバンド構造



仮想結晶近似(VCA)


不規則合金の電子構造の計算を行うためには、色々な近似が考えられます。
AkaiKKRでB(N)-dopedダイヤモンドでは、AkaiKKR(Machikaneyama)に実装されているコヒーレントポテンシャル近似(CPA)を用いました。AkaiKKRでリジッドバンド模型もどきでは、AkaiKKRを少しトリッキーに使い、リジッドバンド模型のような計算を行いました。他にもスーパーセルを使う方法も考えられます(参考: AkaiKKRでスーパーセル その1)。

今回は、更に別の方法として仮想結晶近似(VCA)を用いてホウ素をドープしたダイヤモンドの電子構造をecaljを用いて計算しました。

なお、これらの近似のエライ(つまり、近似として上等である)順番は、コヒーレントポテンシャル近似、仮想結晶近似、リジッドバンド模型です。スーパーセル法とコヒーレントポテンシャル近似は、どちらも一長一短なので、必ずしもどちらがエライというわけでもないはずです。

計算手法


計算手法は、基本的にはecaljで仮想結晶近似と同様です。通常通り、ダイヤモンドの結晶構造ファイルを作成します(参考: ecaljの実行手順(LDA計算), ecaljでシリコンのバンド構造(LDA計算))。
STRUC   ALAT=6.74
PLAT=0.0 1/2 1/2
1/2 0.0 1/2
1/2 1/2 0.0
SITE ATOM=C POS=0.0 0.0 0.0
ATOM=C POS=1/4 1/4 1/4

この結晶構造ファイルから ctrlgenM1.py を用いて制御ファイルを自動生成させます。

更にこの制御ファイルをテキストエディタで編集します。今回は、炭素(原子番号:6)の5%をホウ素(原子番号:5)に置換するので 6*0.95 + 5*0.05 = 5.95 とします。
SPEC
ATOM=C Z=5.95 R=1.42


計算結果


計算結果のバンド構造をFig.1に、状態密度をFig.2に示します。

tdos-bdia-vca.png
Fig.2: ダイヤモンドと炭素の5%をホウ素に置換したダイヤモンドの状態密度


純粋なダイヤモンドは半導体ですが、ホウ素をドープしたダイヤモンドはフェルミ準位が荷電しバンドの中にあるような、金属的なバンド構造になりました。仮想結晶近似(VCA)は、コヒーレントポテンシャル近似(CPA)とリジッドバンド模型の中間のエラさに位置するので、当然ながらこれら二つと似たような結果になります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 仮想結晶近似 VCA 半導体 ダイヤモンド 

ecaljで仮想結晶近似

ecaljの仮想結晶近似(VCA)の機能を用いてbcc Fe1-xCoxの状態密度を計算しました。
その結果、AkaiKKRでFeCoの磁気モーメントと格子定数で計算したコヒーレントポテンシャル近似(CPA)の結果と似たような挙動が確認できました。

FeCo.gif

Fig.1: 仮想結晶近似(VCA)によるbcc Fe1-xCoxの状態密度



合金の電子状態


固体物理の多くの第一原理計算パッケージでは、結晶の周期性を利用しているため不規則構造の計算が苦手です。AkaiKKR(machikaneyama)は、コヒーレントポテンシャル近似(CPA)を用いて不規則性を扱います。合金を扱うほかの方法としては、スーパーセル法(参考: AkaiKKRでスーパーセル その1)などがあります。これ以外にもCPAよりももう一歩手前の近似法として仮想結晶近似(VCA: Virtual Crystal Approximation)というものが存在します。

ecaljのマニュアルを読むと、どうやらVCAが使えるようなので、今回は体心立方構造(bcc)のFe1-xCoxの状態密度を計算してみました。

計算手順


ecaljのマニュアルのP15にはYou can use Z=37.5 for virtual crystal approximation, however, you can not do it in ctrls now. Edit it in ctrl file.のように書いてあります。そこで通常通りbcc鉄の結晶構造ファイルを作り ctrlgenM1.py--nspin=2 のオプションを与えて制御ファイルを作成します(参考: ecaljで強磁性鉄のスピン分極計算)。

この後、作成した制御ファイルの原子番号Zを編集します。例えばFe0.8Co0.2なら、原子番号が26の鉄と27のコバルトの合金なので 26*0.8 + 27*0.2 = 26.2ということだと思います。(しかしこれだとFe0.9Ni0.1でも同じ結果になってしまう?私が何か勘違いしている?)

結果


以下に計算結果の純鉄とFe0.8Co0.2の状態密度を示します。

FeCo0.png
FeCo20.png

Fig.2-3: bcc Feとbcc Fe0.8Co0.2の状態密度


コバルト濃度を増していくと、アップスピンの状態密度が低エネルギー側へ移動していくような挙動が見られました。これはAkaiKKRでFeCoの磁気モーメントと格子定数で計算した結果と似たような挙動であることが分かります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 強磁性 仮想結晶近似 VCA 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSPDS5022定電流スイッチング回路確率論半導体分散関係シェルスクリプト乱数レベルシフトHP6632Aトランジスタ技術温度解析可変抵抗I2CブレッドボードR6452A反強磁性数値積分バンド構造バンドギャップセミナー絶縁偏微分方程式非線形方程式ソルバPWscf熱設計シュミットトリガLED三端子レギュレータ順列・組み合わせLM358GW近似カオスマフィンティン半径ISO-I2CフォトカプラA/Dコンバータ発振回路74HC4053数値微分直流動作点解析サーボPC817CアナログスイッチUSB補間TL431カレントミラーbzqltyVESTA電子負荷イジング模型LDA開発環境ブラべ格子FFT量子力学2ちゃんねるチョッパアンプ単振り子ポケモンGOスーパーリーグ標準ロジックQuantumESPRESSO基本並進ベクトルパラメトリック解析アセンブラBSchトレーナーバトル抵抗Maximaラプラス方程式失敗談状態方程式SMPキュリー温度スイッチト・キャパシタ位相図繰り返し熱伝導gfortranコバルトewidthTLP621不規則合金ランダムウォーク六方最密充填構造FET最適化相対論スピン軌道相互作用QSGWQuantum_ESPRESSOGGAVCA仮想結晶近似スレーターポーリング曲線cygwinZnOシュレディンガー方程式フォノンNE555詰め回路条件分岐固有値問題最大値ダイヤモンドガイガー管TLP552マントル自動計測データロガーQNAPUPSCIF井戸型ポテンシャルMCUxcrysdenゼーベック係数格子比熱最小値LM555フェルミ面fsolve過渡解析差し込みグラフ三角波起電力スーパーセル第一原理計算ブラウン運動FXA-7020ZROpenMPTLP521Ubuntuハーフメタル熱力学Writer509ubuntu平均場近似テスタawkLMC662フィルタMAS830LCK1026トランスPIC16F785AACircuit負帰還安定性ハイパーリーグCapSenseナイキスト線図ノコギリ波2SC1815EAGLEPvPP-10OPA2277MBEPGA入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分不純物問題擬ポテンシャル状態図cif2cellPWguiSIC二相共存リジッドバンド模型edeltquantumESPRESSOスワップ領域ルチル構造ウルツ鉱構造BaO岩塩構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ