AkaiKKRで仮想結晶近似

ecaljで仮想結晶近似ecaljでB-dopedダイヤモンドでは、原子番号に小数を指定することによって合金の計算を行いました。AkaiKKR(machikaneyama)ではCPAで合金の計算が出来るので出番はなさそうだと思っていましたが、原子番号の部分に小数を指定できるということです。

bccFeX-float.png

Fig.1: 強磁性鉄中の不純物元素の磁気モーメント


AkaiKKRで不純物の磁気モーメントでは強磁性の鉄の中に、鉄のバンド構造に影響を与えないほど微量の不純物元素を導入したときの不純物元素がもつ磁気モーメントの大きさを計算しました。そして周期表でマンガンよりも左の元素では磁気モーメントが負(鉄の磁気モーメントと反並行)となり、鉄よりも右の元素では正になることが分かりました。

そこで今回は、その中間の原子番号を持つ仮想的な元素ではどうなるのかを調べるために原子番号に非整数を用いて計算を行ってみました。結果はFig.1のようになりました。非整数の原子番号を持つ仮想的な原子の磁気モーメントが、現実の物性と比較してどういう意味があるのかは分かりませんが、思った以上にきれいなトレンドを示す結果になりました。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 仮想結晶近似 VCA 強磁性 

ecaljでB-dopedダイヤモンド

ecaljと仮想結晶近似(VCA)を用いて、ダイヤモンドの炭素原子を5%ホウ素に置換したホウ素ドープダイヤモンドの電子構造を計算しました。結果は、AkaiKKRでB(N)-dopedダイヤモンドAkaiKKRでリジッドバンド模型もどきの結果と調和的で、純粋なダイヤモンドは絶縁体、ホウ素をドープしたダイヤモンドは金属的なバンド構造となりました。

bandplot-bdia-vca.png
Fig.1: ダイヤモンドとホウ素をドープしたダイヤモンドのバンド構造



仮想結晶近似(VCA)


不規則合金の電子構造の計算を行うためには、色々な近似が考えられます。
AkaiKKRでB(N)-dopedダイヤモンドでは、AkaiKKR(Machikaneyama)に実装されているコヒーレントポテンシャル近似(CPA)を用いました。AkaiKKRでリジッドバンド模型もどきでは、AkaiKKRを少しトリッキーに使い、リジッドバンド模型のような計算を行いました。他にもスーパーセルを使う方法も考えられます(参考: AkaiKKRでスーパーセル その1)。

今回は、更に別の方法として仮想結晶近似(VCA)を用いてホウ素をドープしたダイヤモンドの電子構造をecaljを用いて計算しました。

なお、これらの近似のエライ(つまり、近似として上等である)順番は、コヒーレントポテンシャル近似、仮想結晶近似、リジッドバンド模型です。スーパーセル法とコヒーレントポテンシャル近似は、どちらも一長一短なので、必ずしもどちらがエライというわけでもないはずです。

計算手法


計算手法は、基本的にはecaljで仮想結晶近似と同様です。通常通り、ダイヤモンドの結晶構造ファイルを作成します(参考: ecaljの実行手順(LDA計算), ecaljでシリコンのバンド構造(LDA計算))。
STRUC   ALAT=6.74
PLAT=0.0 1/2 1/2
1/2 0.0 1/2
1/2 1/2 0.0
SITE ATOM=C POS=0.0 0.0 0.0
ATOM=C POS=1/4 1/4 1/4

この結晶構造ファイルから ctrlgenM1.py を用いて制御ファイルを自動生成させます。

更にこの制御ファイルをテキストエディタで編集します。今回は、炭素(原子番号:6)の5%をホウ素(原子番号:5)に置換するので 6*0.95 + 5*0.05 = 5.95 とします。
SPEC
ATOM=C Z=5.95 R=1.42


計算結果


計算結果のバンド構造をFig.1に、状態密度をFig.2に示します。

tdos-bdia-vca.png
Fig.2: ダイヤモンドと炭素の5%をホウ素に置換したダイヤモンドの状態密度


純粋なダイヤモンドは半導体ですが、ホウ素をドープしたダイヤモンドはフェルミ準位が荷電しバンドの中にあるような、金属的なバンド構造になりました。仮想結晶近似(VCA)は、コヒーレントポテンシャル近似(CPA)とリジッドバンド模型の中間のエラさに位置するので、当然ながらこれら二つと似たような結果になります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 仮想結晶近似 VCA 半導体 ダイヤモンド 

ecaljで仮想結晶近似

ecaljの仮想結晶近似(VCA)の機能を用いてbcc Fe1-xCoxの状態密度を計算しました。
その結果、AkaiKKRでFeCoの磁気モーメントと格子定数で計算したコヒーレントポテンシャル近似(CPA)の結果と似たような挙動が確認できました。

FeCo.gif

Fig.1: 仮想結晶近似(VCA)によるbcc Fe1-xCoxの状態密度



合金の電子状態


固体物理の多くの第一原理計算パッケージでは、結晶の周期性を利用しているため不規則構造の計算が苦手です。AkaiKKR(machikaneyama)は、コヒーレントポテンシャル近似(CPA)を用いて不規則性を扱います。合金を扱うほかの方法としては、スーパーセル法(参考: AkaiKKRでスーパーセル その1)などがあります。これ以外にもCPAよりももう一歩手前の近似法として仮想結晶近似(VCA: Virtual Crystal Approximation)というものが存在します。

ecaljのマニュアルを読むと、どうやらVCAが使えるようなので、今回は体心立方構造(bcc)のFe1-xCoxの状態密度を計算してみました。

計算手順


ecaljのマニュアルのP15にはYou can use Z=37.5 for virtual crystal approximation, however, you can not do it in ctrls now. Edit it in ctrl file.のように書いてあります。そこで通常通りbcc鉄の結晶構造ファイルを作り ctrlgenM1.py--nspin=2 のオプションを与えて制御ファイルを作成します(参考: ecaljで強磁性鉄のスピン分極計算)。

この後、作成した制御ファイルの原子番号Zを編集します。例えばFe0.8Co0.2なら、原子番号が26の鉄と27のコバルトの合金なので 26*0.8 + 27*0.2 = 26.2ということだと思います。(しかしこれだとFe0.9Ni0.1でも同じ結果になってしまう?私が何か勘違いしている?)

結果


以下に計算結果の純鉄とFe0.8Co0.2の状態密度を示します。

FeCo0.png
FeCo20.png

Fig.2-3: bcc Feとbcc Fe0.8Co0.2の状態密度


コバルト濃度を増していくと、アップスピンの状態密度が低エネルギー側へ移動していくような挙動が見られました。これはAkaiKKRでFeCoの磁気モーメントと格子定数で計算した結果と似たような挙動であることが分かります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 強磁性 仮想結晶近似 VCA 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性PICCPAOPアンプecalj常微分方程式モンテカルロ解析状態密度odeトランジスタインターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632Aトランジスタ技術ブレッドボード可変抵抗温度解析I2CR6452A反強磁性バンドギャップ確率論数値積分セミナー偏微分方程式絶縁バンド構造熱設計非線形方程式ソルバシュミットトリガISO-I2CLEDマフィンティン半径GW近似三端子レギュレータLM358A/DコンバータカオスフォトカプラUSBPC817C直流動作点解析サーボ74HC4053アナログスイッチTL431発振回路カレントミラー数値微分単振り子量子力学開発環境補間2ちゃんねるチョッパアンプbzqltyFFT電子負荷アセンブラBSchLDA標準ロジックパラメトリック解析ブラべ格子基本並進ベクトルイジング模型VESTAVCAMaximaSMPewidthGGA仮想結晶近似FET位相図キュリー温度QSGWTLP621ランダムウォーク不規則合金gfortranコバルト相対論失敗談抵抗状態方程式スレーターポーリング曲線ラプラス方程式スピン軌道相互作用スイッチト・キャパシタ六方最密充填構造熱伝導繰り返しcygwinTLP552条件分岐TLP521NE555LM555マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測Writer509UPSQNAPダイヤモンドデータロガー格子比熱熱力学平均場近似OpenMPブラウン運動スーパーセルUbuntuフェルミ面差し込みグラフubuntuハーフメタルfsolve最適化第一原理計算固有値問題シュレディンガー方程式最小値awk起電力井戸型ポテンシャルCIFxcrysden最大値結晶磁気異方性PGATeX非線型方程式ソルバ2SC1815等高線OPA2277面心立方構造初期値FSM正規分布interp1ウィグナーザイツ胞フィルタfccL10構造合金BaOウルツ鉱構造CapSense岩塩構造ルチル構造ZnO二相共存磁気モーメント不純物問題電荷密度重積分SICスワップ領域リジッドバンド模型multiplotジバニャン方程式gnuplotc/a全エネルギー半金属デバイ模型edeltquantumESPRESSOノコギリ波フォノン固定スピンモーメントspecx.f等価回路モデル円周率パラメータ・モデルヒストグラム不規則局所モーメントTS-112TS-110直流解析PCExcelシンボルGimp日本語最小二乗法フラクタルマンデルブロ集合縮退クーロン散乱三次元ゼーベック係数キーボード入出力関数フィッティング文字列疎行列Realforceトラックボール線種EAGLE連立一次方程式MBECrank-Nicolson法AACircuit負帰還安定性ナイキスト線図マテリアルデザインP-10化学反応ifort境界条件陰解法熱拡散方程式MAS830LCK1026グラフの分割軸ラベル凡例片対数グラフトランスHiLAPW両対数グラフLMC662PIC16F785ヒストグラム確率論

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ