ecaljでB-dopedダイヤモンド

ecaljと仮想結晶近似(VCA)を用いて、ダイヤモンドの炭素原子を5%ホウ素に置換したホウ素ドープダイヤモンドの電子構造を計算しました。結果は、AkaiKKRでB(N)-dopedダイヤモンドAkaiKKRでリジッドバンド模型もどきの結果と調和的で、純粋なダイヤモンドは絶縁体、ホウ素をドープしたダイヤモンドは金属的なバンド構造となりました。

bandplot-bdia-vca.png
Fig.1: ダイヤモンドとホウ素をドープしたダイヤモンドのバンド構造



仮想結晶近似(VCA)


不規則合金の電子構造の計算を行うためには、色々な近似が考えられます。
AkaiKKRでB(N)-dopedダイヤモンドでは、AkaiKKR(Machikaneyama)に実装されているコヒーレントポテンシャル近似(CPA)を用いました。AkaiKKRでリジッドバンド模型もどきでは、AkaiKKRを少しトリッキーに使い、リジッドバンド模型のような計算を行いました。他にもスーパーセルを使う方法も考えられます(参考: AkaiKKRでスーパーセル その1)。

今回は、更に別の方法として仮想結晶近似(VCA)を用いてホウ素をドープしたダイヤモンドの電子構造をecaljを用いて計算しました。

なお、これらの近似のエライ(つまり、近似として上等である)順番は、コヒーレントポテンシャル近似、仮想結晶近似、リジッドバンド模型です。スーパーセル法とコヒーレントポテンシャル近似は、どちらも一長一短なので、必ずしもどちらがエライというわけでもないはずです。

計算手法


計算手法は、基本的にはecaljで仮想結晶近似と同様です。通常通り、ダイヤモンドの結晶構造ファイルを作成します(参考: ecaljの実行手順(LDA計算), ecaljでシリコンのバンド構造(LDA計算))。
STRUC   ALAT=6.74
PLAT=0.0 1/2 1/2
1/2 0.0 1/2
1/2 1/2 0.0
SITE ATOM=C POS=0.0 0.0 0.0
ATOM=C POS=1/4 1/4 1/4

この結晶構造ファイルから ctrlgenM1.py を用いて制御ファイルを自動生成させます。

更にこの制御ファイルをテキストエディタで編集します。今回は、炭素(原子番号:6)の5%をホウ素(原子番号:5)に置換するので 6*0.95 + 5*0.05 = 5.95 とします。
SPEC
ATOM=C Z=5.95 R=1.42


計算結果


計算結果のバンド構造をFig.1に、状態密度をFig.2に示します。

tdos-bdia-vca.png
Fig.2: ダイヤモンドと炭素の5%をホウ素に置換したダイヤモンドの状態密度


純粋なダイヤモンドは半導体ですが、ホウ素をドープしたダイヤモンドはフェルミ準位が荷電しバンドの中にあるような、金属的なバンド構造になりました。仮想結晶近似(VCA)は、コヒーレントポテンシャル近似(CPA)とリジッドバンド模型の中間のエラさに位置するので、当然ながらこれら二つと似たような結果になります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 仮想結晶近似 VCA 半導体 ダイヤモンド 

ecaljで仮想結晶近似

ecaljの仮想結晶近似(VCA)の機能を用いてbcc Fe1-xCoxの状態密度を計算しました。
その結果、AkaiKKRでFeCoの磁気モーメントと格子定数で計算したコヒーレントポテンシャル近似(CPA)の結果と似たような挙動が確認できました。

FeCo.gif

Fig.1: 仮想結晶近似(VCA)によるbcc Fe1-xCoxの状態密度



合金の電子状態


固体物理の多くの第一原理計算パッケージでは、結晶の周期性を利用しているため不規則構造の計算が苦手です。AkaiKKR(machikaneyama)は、コヒーレントポテンシャル近似(CPA)を用いて不規則性を扱います。合金を扱うほかの方法としては、スーパーセル法(参考: AkaiKKRでスーパーセル その1)などがあります。これ以外にもCPAよりももう一歩手前の近似法として仮想結晶近似(VCA: Virtual Crystal Approximation)というものが存在します。

ecaljのマニュアルを読むと、どうやらVCAが使えるようなので、今回は体心立方構造(bcc)のFe1-xCoxの状態密度を計算してみました。

計算手順


ecaljのマニュアルのP15にはYou can use Z=37.5 for virtual crystal approximation, however, you can not do it in ctrls now. Edit it in ctrl file.のように書いてあります。そこで通常通りbcc鉄の結晶構造ファイルを作り ctrlgenM1.py--nspin=2 のオプションを与えて制御ファイルを作成します(参考: ecaljで強磁性鉄のスピン分極計算)。

この後、作成した制御ファイルの原子番号Zを編集します。例えばFe0.8Co0.2なら、原子番号が26の鉄と27のコバルトの合金なので 26*0.8 + 27*0.2 = 26.2ということだと思います。(しかしこれだとFe0.9Ni0.1でも同じ結果になってしまう?私が何か勘違いしている?)

結果


以下に計算結果の純鉄とFe0.8Co0.2の状態密度を示します。

FeCo0.png
FeCo20.png

Fig.2-3: bcc Feとbcc Fe0.8Co0.2の状態密度


コバルト濃度を増していくと、アップスピンの状態密度が低エネルギー側へ移動していくような挙動が見られました。これはAkaiKKRでFeCoの磁気モーメントと格子定数で計算した結果と似たような挙動であることが分かります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: ecalj 強磁性 仮想結晶近似 VCA 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ