単電源三角波/方形波発振回路

秋月でレールtoレールOPアンプLMC6482が安価に入手できるようになったので、ブレッドボード上に単電源三角波/方形波発振回路を作成しました。

001_20090908015052.png 002_20090908015051.jpg 003_20090908015051.png


三角波/方形波発振回路


単電源で動作する三角波/矩形波発振回路の回路図をfig.1に示します。


001_20090908015052.png
fig.1: 回路図


LTspiceで三角波/方形波発振回路では、この回路をLTspiceでシミュレーションしました。


002_20090908015051.jpg
fig.2: ブレッドボード上の回路


実測波形


PDS5022Sで実測した波形を示します。


003_20090908015051.png
fig.3: 実測波形


比較用に、LTspiceで三角波/方形波発振回路のシミュレーションを再掲します。


001_20090907230243.png
fig.4: スケマティック

002_20090907230242.png
fig.5: グラフ


関連エントリ




付録


このエントリで使用したBSch3V形式回路図ファイルと測定データファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: OPアンプ LTspice 三角波 ブレッドボード 

LTspiceで三角波/方形波発振回路

三角波を作る回路として、ヒステリシスコンパレータと積分回路をリング状にしたものが有名です。単電源で実現することを目標にLTspiceでシミュレーションしました。

001_20090907230243.png 002_20090907230242.png


三角波発振回路とヒステリシス曲線


PSoC/GPIOのしきい値とヒステリシスPSoC/GPIOのしきい値と電源電圧では、オシロスコープと発振回路を用いて、ヒステリシス特性曲線を描きました。これらのエントリでは、PSoCでLED正弦波駆動の正弦波を流用できたので、信号源として正弦波を用いましたが、他の一般的なデジタルバッファのしきい値を調べるためには、信号源として三角波発振回路を用意する方が向いているでしょう。

三角波/方形波発振回路の構成


三角波を発生させる回路として、ヒステリシスコンパレータと積分回路をリング状にしたものが有名で、趣味の電子工作三角波発振器などいろいろなところで紹介されています。
この回路は、同一周波数の三角波と同位相の方形波を同時に取り出せるので便利です。
fig.1-2にLTspiceを用いたシミュレーションを示します。


001_20090907230243.png
fig.1: 三角波/方形波発振回路のスケマティック

002_20090907230242.png
fig.2: 三角波/方形波発振回路の出力波形


この回路の発振周波数は、以下の式で計算できます。

f = \frac{1}{4C_{1}R_{1}} \left( \frac{R_{2}}{R_{3}//R_{4}} \right)


発振周波数は電源電圧に依存しませんが、出力電圧振幅はV(ref)に対して対称である必要があります。多くの汎用OPアンプは出力電圧振幅が上下対称なので、V(ref)=0VとしVEE=-VCCと両電源で使うと上手くいくはずですが、LM358のように出力振幅が電源電圧に対して非対称な例外もあるので注意が必要です。

出力振幅がV(ref)に対して非対称の場合は、最悪発振しません。R3//R4を小さく採れば、発振させることができるかもしれませんが、三角波の傾きや矩形波のDuty比が非対称になります。


003_20090907230309.png
fig.3: LM358を用いた三角波/方形波発振回路のスケマティック

004_20090907230308.png
fig.4: LM358を用いた三角波/方形波発振回路の出力波形


fig.3-4では、LM358の出力振幅にあわせてV(ref)=2.0Vとしたシミュレーションを行いました。LM358のモデルはナショナルセミコンダクタのものを利用しました。

レールtoレールOPアンプ LMC6482


実際に単電源で三角波/方形波発振回路を作る場合は、入出力レールtoレールOPアンプを利用することになると思います。問題が出力電圧の対称性だけなら、LMC662等の出力のみがレールtoレールのOPアンプでもよいのですが、U1はコンパレータ動作のため、非反転入力端子にはfig.2のV(niv)のような電圧がかかります。

このように、三角波/方形波発振回路は、使用するOPアンプに対して出力振幅の対称性だけでなく、同相入力電圧範囲と出力電圧範囲が同じであることも、暗黙のうちに要求しています。
したがって、この回路を単電源で使用する場合は、出力振幅・同相入力電圧範囲がともに大きく取れる入出力レールtoレールOPアンプが必要になります。(まあ、現実的にはコンパレータとして動作させるだけなので、LMC662でもちゃんと発振するでしょうが。)

最近、秋月電子通商で2回路入りの単電源レールtoレールOPアンプLMC6482が売られるようになりました。次回のエントリでは、これで単電源三角波/方形波発振回路を作ります。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献/使用機器





フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: OPアンプ LTspice 三角波 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ