単電源三角波/方形波発振回路

秋月でレールtoレールOPアンプLMC6482が安価に入手できるようになったので、ブレッドボード上に単電源三角波/方形波発振回路を作成しました。

001_20090908015052.png 002_20090908015051.jpg 003_20090908015051.png


三角波/方形波発振回路


単電源で動作する三角波/矩形波発振回路の回路図をfig.1に示します。


001_20090908015052.png
fig.1: 回路図


LTspiceで三角波/方形波発振回路では、この回路をLTspiceでシミュレーションしました。


002_20090908015051.jpg
fig.2: ブレッドボード上の回路


実測波形


PDS5022Sで実測した波形を示します。


003_20090908015051.png
fig.3: 実測波形


比較用に、LTspiceで三角波/方形波発振回路のシミュレーションを再掲します。


001_20090907230243.png
fig.4: スケマティック

002_20090907230242.png
fig.5: グラフ


関連エントリ




付録


このエントリで使用したBSch3V形式回路図ファイルと測定データファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: OPアンプ LTspice 三角波 ブレッドボード 

LTspiceで三角波/方形波発振回路

三角波を作る回路として、ヒステリシスコンパレータと積分回路をリング状にしたものが有名です。単電源で実現することを目標にLTspiceでシミュレーションしました。

001_20090907230243.png 002_20090907230242.png


三角波発振回路とヒステリシス曲線


PSoC/GPIOのしきい値とヒステリシスPSoC/GPIOのしきい値と電源電圧では、オシロスコープと発振回路を用いて、ヒステリシス特性曲線を描きました。これらのエントリでは、PSoCでLED正弦波駆動の正弦波を流用できたので、信号源として正弦波を用いましたが、他の一般的なデジタルバッファのしきい値を調べるためには、信号源として三角波発振回路を用意する方が向いているでしょう。

三角波/方形波発振回路の構成


三角波を発生させる回路として、ヒステリシスコンパレータと積分回路をリング状にしたものが有名で、趣味の電子工作三角波発振器などいろいろなところで紹介されています。
この回路は、同一周波数の三角波と同位相の方形波を同時に取り出せるので便利です。
fig.1-2にLTspiceを用いたシミュレーションを示します。


001_20090907230243.png
fig.1: 三角波/方形波発振回路のスケマティック

002_20090907230242.png
fig.2: 三角波/方形波発振回路の出力波形


この回路の発振周波数は、以下の式で計算できます。

f = \frac{1}{4C_{1}R_{1}} \left( \frac{R_{2}}{R_{3}//R_{4}} \right)


発振周波数は電源電圧に依存しませんが、出力電圧振幅はV(ref)に対して対称である必要があります。多くの汎用OPアンプは出力電圧振幅が上下対称なので、V(ref)=0VとしVEE=-VCCと両電源で使うと上手くいくはずですが、LM358のように出力振幅が電源電圧に対して非対称な例外もあるので注意が必要です。

出力振幅がV(ref)に対して非対称の場合は、最悪発振しません。R3//R4を小さく採れば、発振させることができるかもしれませんが、三角波の傾きや矩形波のDuty比が非対称になります。


003_20090907230309.png
fig.3: LM358を用いた三角波/方形波発振回路のスケマティック

004_20090907230308.png
fig.4: LM358を用いた三角波/方形波発振回路の出力波形


fig.3-4では、LM358の出力振幅にあわせてV(ref)=2.0Vとしたシミュレーションを行いました。LM358のモデルはナショナルセミコンダクタのものを利用しました。

レールtoレールOPアンプ LMC6482


実際に単電源で三角波/方形波発振回路を作る場合は、入出力レールtoレールOPアンプを利用することになると思います。問題が出力電圧の対称性だけなら、LMC662等の出力のみがレールtoレールのOPアンプでもよいのですが、U1はコンパレータ動作のため、非反転入力端子にはfig.2のV(niv)のような電圧がかかります。

このように、三角波/方形波発振回路は、使用するOPアンプに対して出力振幅の対称性だけでなく、同相入力電圧範囲と出力電圧範囲が同じであることも、暗黙のうちに要求しています。
したがって、この回路を単電源で使用する場合は、出力振幅・同相入力電圧範囲がともに大きく取れる入出力レールtoレールOPアンプが必要になります。(まあ、現実的にはコンパレータとして動作させるだけなので、LMC662でもちゃんと発振するでしょうが。)

最近、秋月電子通商で2回路入りの単電源レールtoレールOPアンプLMC6482が売られるようになりました。次回のエントリでは、これで単電源三角波/方形波発振回路を作ります。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献/使用機器





フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: OPアンプ LTspice 三角波 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ