Scilabで荷電粒子の三次元運動

微分方程式による物理現象のモデル化(PDF)の直交電磁界中の荷電粒子のプログラムをScilabで再現します。
元PDFでも指摘されている通り、計算そのものよりも三次元的にプロットするほうが本題だと思います。

001_20130729175916.png

Fig.1: 荷電粒子の三次元運動。三次元プロットしたものとx-y平面にプロットしたもの。x-y平面にプロットしても実際の運動の様子はいまいち良く分からない。


また、元PDFではz方向の磁界とy方向の電界をパラメータとするプログラムを書いていますが、それ以外の方向にも書けるようにしておきます。


解くべき微分方程式は以下のように示されます。

\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{q}{m} \vec{E} + \frac{q}{m} \vec{v}\times\vec{B}

Scilabのode関数で解くためには dX/dt = ...の形にします。要素が増えると分かり辛くなるので、ベクトルの中での順番が分かりやすいように要素を書き下します。

3200cfe9f5356627aee923664d453908_90_black.png

次に微分方程式もベクトルの要素を書き出します。

\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix}v_x \\v_y \\v_z\end{pmatrix}&=\frac{q}{m}\begin{pmatrix}E_x \\E_y \\E_z\end{pmatrix}+\frac{q}{m}\begin{pmatrix}v_x \\v_y \\v_z\end{pmatrix}\times\begin{pmatrix}B_x \\B_y \\B_z\end{pmatrix}\\&=\frac{q}{m}\begin{pmatrix}E_x \\E_y \\E_z\end{pmatrix}+\frac{q}{m}\begin{pmatrix}v_y B_z - v_z B_y \\v_z B_z - v_x B_z \\v_x B_y - v_y B_x\end{pmatrix}

これを踏まえたScilabのプログラムがemdrift_sce.txtです。
Scilabでカオスアトラクタではplot3d3を使いましたが、これは三次元曲面を描く命令で、三次元空間に曲線を引くのはparam3dで行うのが良いようです。

clear;

// *** 入力パラメータ ***
m = 1.0; // 粒子の質量
q = 1.0; // 粒子の電荷
// 一様磁界
bx = 0;
by = 0;
bz = 3.0;
// 一様電解
ex = 0;
ey = 1.5;
ez = 0;

// *** 解くべき常微分方程式の定義 ***
function dx = em(t,x)
// dx/dt = vx
dx(1) = x(2);
// dy/dt = vy
dx(3) = x(4);
// dz/dt = vz
dx(5) = x(6);
// dvx/dt = (q/m) * Ex + (q/m) * (vy*Bz-vz*By)
dx(2) = q * ex / m + q * (x(4) * bz - x(6) * by) / m;
// dvy/dt = (q/m) * Ey + (q/m) * (vz*Bx-vx*Bz)
dx(4) = q * ey / m + q * (x(6) * bx - x(2) * bz) / m;
// dvz/dt = (q/m) * Ez + (q/m) * (vx*By-vz*Bx)
dx(6) = q * ez / m + q * (x(2) * by - x(4) * bx) / m;
endfunction

// 時間ベクトル
T = linspace(0,20,201);

// 初期条件
x0 = 0;
vx0 = - 1;
y0 = 0;
vy0 = 0;
z0 = 0;
vz0 = 0.5;
X0 = [x0; vx0; y0; vy0; z0; vz0];

// 常微分方程式ソルバ
X = ode(X0,0,T,em);

// グラフのプロット
param3d(X(1,:),X(3,:),X(5,:),,flag=[5,4],ebox=[-5,5,-5,5,0,10]);
param3d(X(1,:),X(3,:),zeros(X(5,:)),flag=[5,4],ebox=[-5,5,-5,5,0,10]);
xlabel("x");
ylabel("y");
zlabel("z");



関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 常微分方程式 ode 三次元 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPAPIC強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースecalj定電流スイッチング回路PDS5022DOS半導体乱数シェルスクリプトレベルシフトHP6632Aブレッドボード分散関係温度解析トランジスタ技術R6452A可変抵抗I2Cセミナー確率論反強磁性非線形方程式ソルバ絶縁偏微分方程式バンド構造熱設計数値積分バンドギャップカオスA/DコンバータフォトカプラシュミットトリガGW近似LEDLM358ISO-I2C三端子レギュレータ数値微分サーボ直流動作点解析カレントミラーマフィンティン半径TL431PC817C発振回路74HC4053USBアナログスイッチbzqltyFFTチョッパアンプ2ちゃんねる補間量子力学開発環境電子負荷標準ロジックパラメトリック解析アセンブラ基本並進ベクトルブラべ格子単振り子BSchLDAイジング模型繰り返しMaximaキュリー温度位相図状態方程式失敗談スピン軌道相互作用六方最密充填構造相対論FET抵抗コバルト不規則合金TLP621ewidthGGAQSGWgfortranランダムウォークラプラス方程式スイッチト・キャパシタcygwin熱伝導SMPスレーターポーリング曲線三角波格子比熱LM555条件分岐TLP552MCUNE555UPSTLP521QNAPマントルテスタFXA-7020ZR過渡解析詰め回路ガイガー管ダイヤモンド自動計測Writer509データロガー固有値問題VESTAスーパーセルOpenMP差し込みグラフ平均場近似起電力awk仮想結晶近似VCAubuntufsolveブラウン運動熱力学第一原理計算井戸型ポテンシャルシュレディンガー方程式面心立方構造fccウィグナーザイツ胞interp12SC1815L10構造非線型方程式ソルバFSMキーボードTeX結晶磁気異方性初期値OPA2277化学反応等高線ジバニャン方程式ヒストグラム確率論三次元フィルタRealforcePGAフェルミ面正規分布固定スピンモーメント全エネルギースワップ領域リジッドバンド模型edeltquantumESPRESSOルチル構造岩塩構造二相共存ZnOウルツ鉱構造BaOフォノンデバイ模型multiplotgnuplotc/aノコギリ波合金クーロン散乱ハーフメタル半金属CapSenseマンデルブロ集合マテリアルデザインSICGimpCK1026MAS830L円周率トランスPIC16F785凡例線種シンボルLMC662ヒストグラム不規則局所モーメント文字列疎行列TS-110TS-112Excel直流解析等価回路モデル入出力トラックボールPC軸ラベルAACircuitP-10フラクタル境界条件連立一次方程式Ubuntuifortパラメータ・モデルspecx.f関数フィッティング最小二乗法Crank-Nicolson法陰解法日本語EAGLEMBEグラフの分割負帰還安定性ナイキスト線図熱拡散方程式HiLAPW両対数グラフ片対数グラフ縮退

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ