AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度常微分方程式モンテカルロ解析odeトランジスタインターフェースDOSPDS5022スイッチング回路定電流半導体分散関係シェルスクリプト乱数レベルシフトHP6632A可変抵抗温度解析トランジスタ技術ブレッドボードR6452AI2C確率論セミナー数値積分反強磁性バンドギャップ熱設計非線形方程式ソルバ絶縁バンド構造偏微分方程式三端子レギュレータフォトカプラカオスマフィンティン半径ISO-I2CGW近似LM358A/DコンバータシュミットトリガLEDUSB数値微分サーボアナログスイッチ補間発振回路カレントミラー直流動作点解析TL43174HC4053PC817C単振り子FFTVESTA開発環境bzqlty電子負荷量子力学基本並進ベクトルパラメトリック解析標準ロジックチョッパアンプBSchLDAアセンブラブラべ格子2ちゃんねるイジング模型PWscf状態方程式仮想結晶近似キュリー温度Quantum_ESPRESSO熱伝導VCAスイッチト・キャパシタewidth最適化QSGWTLP621GGASMPMaxima失敗談位相図六方最密充填構造繰り返しスピン軌道相互作用相対論ランダムウォークFETgfortranコバルトスレーターポーリング曲線ラプラス方程式抵抗cygwin不規則合金格子比熱熱力学マントル条件分岐MCU井戸型ポテンシャルダイヤモンドQNAPUPS固有値問題シュレディンガー方程式自動計測ガイガー管詰め回路OpenMPTLP521ハーフメタルLM555ubuntufsolveブラウン運動平均場近似NE555ZnOTLP552QuantumESPRESSOxcrysdenCIF最小値最大値awkフェルミ面テスタ第一原理計算Ubuntu差し込みグラフFXA-7020ZR三角波過渡解析Writer509データロガースーパーセル起電力CK1026AACircuitMAS830LフィルタMBEP-10PGAトランスナイキスト線図ノコギリ波負帰還安定性EAGLEOPA2277PIC16F785CapSenseLMC6622SC1815入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題ゼーベック係数cif2cellPWgui擬ポテンシャル二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列状態図陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ