設計、試験、本製作のツール

趣味の電子工作といえど、色々なツールが必要になります。
ソフトウエア的な意味でも、実在する工具という意味でも。

今回のエントリでは、趣味の電子工作において設計、試験、本製作の時系列にしたがってどのようなツールが登場するのかをまとめました。


シミュレータ/ブレッドボードは役に立たない!?


しばしば「回路シミュレータは役に立たない」とか「ブレッドボードは使ってはいけない」といったような極端な主張を耳にすることがあります。

こういった主張は、例えば「回路シミュレータは必ずしも現実の回路の挙動を再現するわけではない」や「ブレッドボードは接触不良が起こり易いため、特に長期にわたって使用する回路の製作には適さない」と言った意味においては確かに正しいのですが、それが直接「使えない」という結論に至るのだとすればやや短絡的です。

逆に、あまり本質的で無い理由からシミュレータ・ブレッドボードを薦める意見を聞くこともあります。曰く「回路シミュレータなら部品を買わなくて済む」「ブレッドボードなら半田ごてを使わないから危なくない」などです。
こういった主張もある側面では正しい訳ですが、やはり、長期的に利用する回路を完成させることが目的なら、部品の購入もハンダ付けも、最後まで避けて通るというわけには行きません。

回路の設計・製作をするときは、お手軽で大雑把なところから始めて、次第に手間がかかる詳細な部分に手を付けていくというのが普通だと思います。
具体的には、私の場合は以下のような手順で開発を進めることが多いです。

  1. 回路シミュレータ
  2. ブレッドボード
  3. ユニバーサル基板
  4. プリント基板


もちろん、工程の途中で逆戻りしたり、間を飛ばしたりすることもあります。
今回のエントリでは、製作の工程順に沿って、どういったツールが有用なのか、私の考えをまとめておこうと思います。

回路シミュレーター


回路シミュレータは、文字通り回路を実際に組み立てなくても回路の挙動を知ることが出来るツールです。例えば回路シミュレータの使いどころでは、回路図を眺めただけではどちら向きに電圧がかかるか分かりにくい回路に対してシミュレーションを行い、コンデンサを接続する極性を決めています。

このような回路シミュレータの利点は、挙げればキリがありません。
とにかく手軽で、実測では困難な波形の観測(たとえば電流波形の測定、実回路では高価な電流プローブが必要になる)がクリック一発、部品定数の変更も簡単であり、部品定数の変化が回路の挙動にどのように影響するかといったグラフを描かせることも容易です。(例:LTspiceで可変抵抗 その-1)

しかしながら、回路シミュレータはあくまで回路の挙動を、あらかじめ与えられた数式をとくことによって計算しているだけであり、実際の回路の挙動とは異なる可能性があるという点は忘れてはいけません。LTspiceの使い方の第10章 失敗例/問題点あたりにいくつか例を挙げてあります。

ブレッドボード


ブレッドボードを用いた試作は、回路シミュレータと異なり現実の回路でありながら、半田付けを必要とする作業に比較すると手軽に進めることができるというメリットがあります。
CMOS4050の出力抵抗のように回路定数を変更しながらの測定の場合は、半田付けを必要としない点が生きてきます。

逆に回路シミュレータと比べると、実回路の測定なので計測器が必要になってきます。
最低でも、テスターは必要です。回路シミュレータとの比較というところまで行くならデジタルオシロが欲しくなることは間違いありませんし、RCサーボモータの電流波形で使った電流計測アダプタのようなちょっとした小物の製作が必要かもしれません。



ブレッドボードでのテストのコツは(これは回路シミュレータにもいえることかもしれませんが)必要以上に大きな規模の回路を組まないことです。挙動を調べたい回路ブロックだけをブレッドボード上に組み上げ、電源や信号は、できる限り信頼できる電源装置や信号発生器から与えるようにします。

また、私は回路を組むのに必要最低限なものよりも大きなブレッドボードを使うほうが好みです。余裕を持って配線の取り回しができますし。後から追加の回路が必要になることも珍しくありません。

ユニバーサル基板


回路シミュレータやブレッドボードで回路の挙動をはっきりさせたら、次はユニバーサル基板に半田付けをします。
あるいは、部品交換による回路定数変更が無い回路(ほとんどがプログラムで賄えるマイコン回路など)ではブレッドボードではなくユニバーサル基板でテストをする方がいいかもしれません。

当然ながら半田付けが必要になるので、材料のほかに工具が必要になります。



ついでに書いておくなら、基板への半田付けには逆作用ピンセットTS-16P-69があるととても便利です。

ブレッドボードや回路シミュレータで回路の挙動がきちんと追い込めているのなら、デジタルオシロなどの立派な計測器の出番は減り、相対的にテスターの出番が増えてくるはずです。

本製作はプリント基板で、と考えている場合も、一度はユニバーサル基板で組んでおいた方がいいと思います。すべての回路を組み上げてみて、初めて新たに回路を追加しなければならないことに気づくというのはよくある話ですし、そういったときはユニバーサル基板の方が多少対処がし易いです。もうどうしようもないというケースもしばしばですが・・・

本製作


本製作は、そのままユニバーサル基板のこともありますが、プリント基板にできればよりよいです。当然、回路むき出しよりもケースにしまう方がいいです。

ケース加工は「ピンバイス」→「リーマー」→「ハンドニブラ」→「ヤスリ」という手順です。



関連エントリ




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice PDS5022 ブレッドボード 

CMOS4050の出力抵抗

4050はデジタル回路のレベルシフトなどに便利な標準ロジックICです。4050でLEDを駆動する場合、出力段のFETが定電流特性となり電流制限抵抗を省略できることがあるようです。
そこで、本エントリでは電源電圧と負荷抵抗を変化させることにより、4050の出力抵抗を測定しました。
その結果、電源電圧が5VのときのみLEDを電流制限抵抗無しで駆動するのに適した出力抵抗となることが分かりました。

003_20101008032453.png 004_20101008032452.png


CMOS4050


4050は、CMOS標準ロジックのひとつで非反転バッファです。


001_20101008032409.png
fig.1: 4050内部等価回路

002_20101008032409.png
fig.2: 4050機能ブロック


fig.1-2は、東芝セミコンダクタの4050データシートによる4050の内部等価回路図です。

東芝セミコンダクタ4050データシートの概要にあるとおり、広い動作可能電源電圧と入力トレラント機能を持つため、レベルシフトをはじめ、さまざまな用途に利用されます。

出力電流が大きく、1 個のTTL を直接駆動できるため、CMOS からTTL の接続に有用です。入力は、VDD に無関係にVSS + 18 V までの電圧を加えることができるため、15 V、10 V 系のCMOS 論理回路から5 V 系のCMOS/TTL 論理回路へのレベル変換IC としても使用できます。


(関連:デジタル回路の簡易レベルシフト)

4050の出力インピーダンス


やまねこさんのつぶやきを見て、以前おこなったSimさんのPICkit2のレベル変換回路(2)のエントリのコメント欄での議論を思い出しました。

このときののりたんさんの解説が

その昔、40xxシリーズのメタルゲートCMOSを使っていた頃には、「CMOS-ICのID-VDS特性は、定電流特性になる。だから、LEDの電流制限抵抗は省略できる。」といわれていました。いわゆる五極管特性の領域を使っていたからだと記憶しています。
ところが、最近のCMOSマイコン出力のID-VDS特性というのは、ほとんど直線になってきています。つまり、三極管特性の部分を使っているようなのです。そのため、出力インピーダンスは線形、つまり抵抗と考えて差し支えないと思います。
VGS電圧が高くなれば、IDが増加します。マイコン出力の場合には、VGSにVDD-VSS間電圧がそのまま印加されるので、gomisaiさんのおっしゃるように、電源電圧に依存してIDが変化するという関係がみえてきます。

そういえば、40xxシリーズのID-VDS特性を実測したことは、ありませんでしたね。
# と、書いておくとgomisaiさんが測定してくれるかも。


これに対する、わたしのレスが

のりたんさん
解説ありがとうございます。
> # と、書いておくとgomisaiさんが測定してくれるかも。
ブログネタリストに加えておきます。


でした。
実を言うと、既に少しだけ測定はしていたのでした。
勿体つけても仕方が無いので、測ってあるところまで公開します。

4050でLEDを駆動するとき電流制限抵抗を省略できるか?


ここで、本エントリの目的をはっきりさせておこうと思います。

PICやAVRの事はとりあえず置いておいて、40xxシリーズ標準ロジックICの4050で順電流が数ミリアンペアから数十ミリアンペア程度のLEDを駆動する際に、抵抗を省略できる(順電流に近い電流領域で、出力インピーダンスが定電流特性に近くなる)か、できないかを各電源電圧について検討することとします。

測定方法


電流の向きは、ソースとしました。基本的には出力電流と出力端子の電圧降下から、オームの法則を用いて出力抵抗を決定します。

出力電流を可変するため、負荷抵抗として100Ωから1kΩまでのE6系列のカーボン抵抗を用意しました。抵抗の取替えを簡単にするため、回路はブレッドボード上に作成しました。


003_20101008032453.png
fig.3: 測定回路


ブレッドボードの接触抵抗などの影響を避けるため、抵抗測定には四端子法を用いました。電圧端子の取出しには、洗濯バサミ型のICテストクリップを用いました。
電源は、HP6632Aシステム電源で3V、5V、9V、12V、15V、18Vに設定したものを利用しました。電流測定と電圧測定は、R6452Aデジタルマルチメータで行いました。

結果と考察


以下に、測定結果を示します。


004_20101008032452.png
fig.4: 4050の出力電流-出力インピーダンス特性


同一シンボルを結んだものが、同一の電源電圧を示しています。
つないだ線が立っているものほど出力が定電流特性に近く、寝ているものほど定抵抗特性に近いといえます。

ここで、電源電圧が5Vである緑のラインに注目してみます。
すると、一般的なLEDの駆動電流として妥当な値である6mA前後の領域でグラフが立っている、すなわち定電流特性に近くなっていることが読み取れます。
したがって、電源電圧が5VのときにはLED駆動時に電流制限抵抗を省略することができるでしょう。

一方で、これよりも高い電源電圧では、グラフが寝ているため定抵抗特性に近くなり、抵抗値も電流制限抵抗を省略するには低い値となっています。

逆に、3V動作時は出力インピーダンスが高くなりすぎて、LEDを十分に駆動できるだけの電流を取り出せなさそうです。

したがって、4050をソースで動作させたときは、電源電圧が5V前後の場合のみ電流制限抵抗を省略した状態でLEDを駆動できるという結論となりました。

関連エントリ




参考URL




付録


このエントリで使用した測定データを添付します。


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: 定電流 レベルシフト R6452A HP6632A ブレッドボード 

単電源三角波/方形波発振回路

秋月でレールtoレールOPアンプLMC6482が安価に入手できるようになったので、ブレッドボード上に単電源三角波/方形波発振回路を作成しました。

001_20090908015052.png 002_20090908015051.jpg 003_20090908015051.png


三角波/方形波発振回路


単電源で動作する三角波/矩形波発振回路の回路図をfig.1に示します。


001_20090908015052.png
fig.1: 回路図


LTspiceで三角波/方形波発振回路では、この回路をLTspiceでシミュレーションしました。


002_20090908015051.jpg
fig.2: ブレッドボード上の回路


実測波形


PDS5022Sで実測した波形を示します。


003_20090908015051.png
fig.3: 実測波形


比較用に、LTspiceで三角波/方形波発振回路のシミュレーションを再掲します。


001_20090907230243.png
fig.4: スケマティック

002_20090907230242.png
fig.5: グラフ


関連エントリ




付録


このエントリで使用したBSch3V形式回路図ファイルと測定データファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: OPアンプ LTspice 三角波 ブレッドボード 

PSoC/GPIOのしきい値とヒステリシス

デジタルオシロスコープPDS5022SをもちいてPSoCのGPIOの入力バッファの特性を測定しました。
その結果VTH=1.68V,VTL=1.52V,VH=160mVと言う値が得られました。

001_20090830113043.png 002_20090830113042.png


マイコンのデジタル入力端子


マイコンのデジタル入力端子は、CPUと外部回路をつなぐ最も基本的なインターフェースです。
レベルシフト 第二回:分圧型と入力レベルのエントリのとおり、そのしきい値電圧は、デジタル回路を設計する上で非常に重要なパラメータです。

シュミットトリガ入力


シュミットトリガ入力は、入力電圧がL→Hに変化するときと、H→Lに変化するときで、しきい値が異なる回路です。
デジタル回路と言えど、その信号電圧の変化は連続的なアナログ値ですが、シュミットトリガ回路を用いると、入力信号の変化速度が遅かったり、ノイズが重畳している場合などでも出力をばたつかせずに切り替えることができます。

これまでにシュミットトリガに関するエントリはたくさん書いたので、以下に示しておきます。



PSoC/GPIO入力特性


PSoCのGPIOは入力端子として使う場合は、すべてシュミットトリガ入力です。
その入力ロジックレベルは(ほぼ)5VTTL互換です。

以下にCY8C29466のデータシートの引用を示します。

SymbolDescriptionMinTypMaxUnitNotes
VILInput Low Level--0.8VVdd = 3.0 to 5.25.
VIHInput High Level2.1--VVdd = 3.0 to 5.25.
VHInput Hysterisis-60-mV
table.1: DC GPIO Specifications


ここで、L→Hへのしきい値をVTL、H→Lのしきい値をVTHとすると

VIL < VTL < VTH < VIH

となり、
VTH - VTL = VH

となります。

本エントリでは、VTHとVTLを実測し、VHを求めました。

測定回路と計測器の構成


1Hz正弦波発振回路からの出力をPSoCのGPIOに入力し、Interconnectで直接他のGPIOへ出力したものをデジタルオシロスコープPDS5022Sで測定し、取得したデータをgnuplotで横軸に入力電圧、縦軸に出力電圧としてヒステリシス曲線をプロットしました。

1Hz正弦波発振回路は、PSoCでLED正弦波駆動の正弦波出力に対して、簡単なRCローパスフィルタ(147kΩ,0.1uF)をかけたものとしました。定数はブレッドボードで差し替えながらおおよそ滑らかな波形になるように選びました。

結果


結果のヒステリシス曲線をfig.1に示します。


001_20090830113043.png
fig.1: ヒステリシス曲線


実測の結果を以下にまとめます。

SymbolDescriptionVoltageUnit
VTL下側しきい値1.52V
VTH上側しきい値1.68V
VHヒステリシス幅160mV
table.2: しきい値とヒステリシス実測値


誤差要因の考察


本来は直流電圧源とデジタルマルチメータで行うべき測定ですが、今回は手間が省けるので交流電圧源とオシロスコープでやってしまいました。
そのため、そのことに起因する誤差が考えられます。

ひとつめは、「PSoCのInterconnectの遅延」です。
入力正弦波が1Hzとかなり遅いため、影響は小さいと考えています。

ふたつめが、「オシロスコープの電圧分解能不足」です。
fig.2に、fig.1の上下のしきい値付近を拡大したものを示します。


002_20090830113042.png
fig.2: ヒステリシス曲線拡大図


十字型のマーカーで示したのがデータ点で、X軸方向のデータ間隔が入力信号の電圧分解能です。
ヒステリシス幅の測定値160mVや公称値60mVに対して、分解能不足の感は否めません。

とはいうものの、
  • ほぼTTL互換入力であること
  • シュミットトリガ入力であること
  • ヒステリシス幅が100mV程度であること

が確認できました。

関連エントリ




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: PSoC インターフェース シュミットトリガ ブレッドボード 

PSoCでLED正弦波駆動

トランジスタ技術2009年1月号チュートリアル通りにPSoCでLEDの正弦波駆動をやってみました。

001_20090604133316.jpg 002_20090604133317.png 005_20090604133317.png


ブレッドボード上での動作確認


まずは実際に動作させているところを紹介します。


001_20090604133316.jpg
fig.1: ブレッドボードでの試作




youtubeの動画を見ると、LEDがぼんやり点灯・消灯を繰り返していることが分かります。
これはPWM駆動ではなく、PSoCの出力端子から正弦波の電圧を出力することにより実現しています。


002_20090604133317.png
fig.2: 回路図


回路図をfig.2に示します。普通のマイコンが、LEDを矩形波駆動する場合の回路と比較しても、PSoCなら正弦波を出力するために特別な外付け部品を必要としません。

LTspiceでシミュレーション


抵抗とLEDの直列回路にたいして正弦波電圧を加えてたときの様子をLTspiceでシミュレーションしました。


003_20090604133359.png
fig.3: 正弦波駆動のスケマティック

004_20090604133359.png
fig.4: CH1(緑)正弦波電圧 CH2(青)電流波形


回路の実測波形


LTspiceシミュレーションと同じノードの波形をPDS5022Sで測定しました。


005_20090604133317.png
fig.5: CH1(赤)電圧波形 CH2(緑)電流波形

006_20090604133359.png
fig.6: CH1(赤)電圧波形 CH2(燈)電流波形


LTspiceと比較すると、正弦波が階段状にぎざぎざしているのが分かります。
これは、PSoCのアナログブロックがスイッチト・キャパシタで実現されているためだと考えられます。PSoCを使う際はこのことを考慮に入れる必要があるかもしれません。また、LTspiceで事前にシミュレーションするときもスイッチト・キャパシタのモデルを作る必要があるかもしれません。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイル・BSch3V形式回路図・PDS5022Sの取得データのタブ区切り形式テキストを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: LTspice PSoC ブレッドボード 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPAPIC強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースecalj定電流スイッチング回路PDS5022DOS半導体乱数シェルスクリプトレベルシフトHP6632Aブレッドボード分散関係温度解析トランジスタ技術R6452A可変抵抗I2Cセミナー確率論反強磁性非線形方程式ソルバ絶縁偏微分方程式バンド構造熱設計数値積分バンドギャップカオスA/DコンバータフォトカプラシュミットトリガGW近似LEDLM358ISO-I2C三端子レギュレータ数値微分サーボ直流動作点解析カレントミラーマフィンティン半径TL431PC817C発振回路74HC4053USBアナログスイッチbzqltyFFTチョッパアンプ2ちゃんねる補間量子力学開発環境電子負荷標準ロジックパラメトリック解析アセンブラ基本並進ベクトルブラべ格子単振り子BSchLDAイジング模型繰り返しMaximaキュリー温度位相図状態方程式失敗談スピン軌道相互作用六方最密充填構造相対論FET抵抗コバルト不規則合金TLP621ewidthGGAQSGWgfortranランダムウォークラプラス方程式スイッチト・キャパシタcygwin熱伝導SMPスレーターポーリング曲線三角波格子比熱LM555条件分岐TLP552MCUNE555UPSTLP521QNAPマントルテスタFXA-7020ZR過渡解析詰め回路ガイガー管ダイヤモンド自動計測Writer509データロガー固有値問題VESTAスーパーセルOpenMP差し込みグラフ平均場近似起電力awk仮想結晶近似VCAubuntufsolveブラウン運動熱力学第一原理計算井戸型ポテンシャルシュレディンガー方程式面心立方構造fccウィグナーザイツ胞interp12SC1815L10構造非線型方程式ソルバFSMキーボードTeX結晶磁気異方性初期値OPA2277化学反応等高線ジバニャン方程式ヒストグラム確率論三次元フィルタRealforcePGAフェルミ面正規分布固定スピンモーメント全エネルギースワップ領域リジッドバンド模型edeltquantumESPRESSOルチル構造岩塩構造二相共存ZnOウルツ鉱構造BaOフォノンデバイ模型multiplotgnuplotc/aノコギリ波合金クーロン散乱ハーフメタル半金属CapSenseマンデルブロ集合マテリアルデザインSICGimpCK1026MAS830L円周率トランスPIC16F785凡例線種シンボルLMC662ヒストグラム不規則局所モーメント文字列疎行列TS-110TS-112Excel直流解析等価回路モデル入出力トラックボールPC軸ラベルAACircuitP-10フラクタル境界条件連立一次方程式Ubuntuifortパラメータ・モデルspecx.f関数フィッティング最小二乗法Crank-Nicolson法陰解法日本語EAGLEMBEグラフの分割負帰還安定性ナイキスト線図熱拡散方程式HiLAPW両対数グラフ片対数グラフ縮退

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ