Scilabでブラウン運動 その2

Scilabでブラウン運動 その1では二次元のランダムウォークの際に、斜めの方向にしか動けないようなモデル化を行っています。

002_20141109070543ce1.png

Fig.1: Scilabでブラウン運動 その1での二次元のシミュレーションの結果。各ステップにおいては、粒子は斜めの方向にしか移動できない。



二次元への拡張への別アプローチ


Scilabでブラウン運動 その1では、Scilabで楽しむ確率論(PDF)の対称ランダムウォークを三次元まで拡張しました。その際の方針は、Scilabで楽しむ確率論(PDF)で一次元から二次元に拡張した際のものを踏襲しました。

しかしながら一次元のランダムウォークを『単位時間(1ステップ)あたりに絶対値で1だけ移動するが、その方向はランダムである』と解釈するならば、二次元に拡張する際に別の考え方をしなければならなさそうです。

そこで今回はx軸からの角度θが一様分布に従った乱数で与えられるようにして、単位時間後に半径1の円周上のどこかに移動している場合のシミュレーションを行います。移動量はそれぞれ以下のように、極座標で計算することができます。

xi = r cosθ
yi = r sinθ

001_20141109095932f86.png
Fig.2: 二次元のランダムウォーク。任意の角度θへ移動できるようにしたバージョン。


Scilabスクリプトは以下のようになります。

clear;

// *** 計算の設定 ***
r = 1; // 1ステップの間に移動する距離
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
theta = 2 * %pi * rand(1,tnum);
xi = r .* cos(theta);
yi = r .* sin(theta);

S = [zeros(2,1), [cumsum(xi,'c'); cumsum(yi,'c')]];

// *** グラフのプロット ***
plot(S(1,:),S(2,:),'-b');
xlabel("x position");
ylabel("y position");


三次元への拡張


三次元への拡張も問題ないと思います。

xi = r sinθcosφ
yi = r sinθsinφ
zi = r cosφ

002_2014110909593264a.png
Fig.3: 三次元のランダムウォーク。三次元の極座標では角度θとφの二つのパラメータが必要。


Scilabスクリプトは以下のようになります。

clear;

// *** 計算の設定 ***
r = 1; // 1ステップの間に移動する距離
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
theta = 2 * %pi * rand(1,tnum);
phi = 2 * %pi * rand(1,tnum);
xi = r .* sin(theta) .* cos(phi);
yi = r .* sin(theta) .* sin(phi);
zi = r .* cos(phi);

S = [zeros(3,1), [cumsum(xi,'c'); cumsum(yi,'c'); cumsum(zi,'c')]];

// *** グラフのプロット ***
param3d(S(1,:),S(2,:),S(3,:));
xlabel("x position");
ylabel("y position");
zlabel("z position");


ランダウの計算物理学による分類


ランダウの計算物理学 基礎編には以下のようにあります。

ランダムステップをどのように発生させるかで,異なる結果に至ることもありうる.以下に, 2次元のランダムウォークを発生するためのいくつかの方法をあげた.

  1. 方位角θを[0,2π]の間の乱数として選ぶ.次にΔx=cosθおよびΔy=sinθとする.(こうすると,一様な乱数を三角関数で写像することになり,当然のことだが水平・垂直の格子点上をランダムウォークするのとは異なる振る舞いとなる.)
  2. Δxを[-√2,√2]の範囲の乱数として選ぶ.これと独立にΔyも[-√2,√2]の範囲の乱数として選ぶ.こうすれば,xとyそれぞれの方向について,正負のステップが同じ確率で発生することになる.
  3. Δxを[-1,1]の範囲の乱数として選ぶ.次にΔy=±√(1-Δx2)とする.(符号もランダムに与える.)
  4. ステップの方向として(北, 東, 南, 西)をランダムに選択する(こうすると三角関数が不要になる).4つの方位から一つを選ぶのは[1,4]の整数を選択するのと等価であることに注意せよ.
  5. ステップの方向として(北, 北東, 東, 南東, 南, 南西, 西, 北東)をランダムに選択する(こうすると三角関数が不要になる).8つの方位から一つを選ぶのは[1,8]の整数を選択するのと等価であることに注意せよ.

今回の例は1.の方法を採用したものです。
そして、Scilabでブラウン運動 その1の方法は4.の方法と同じです。(移動する距離は二次元では√2となっていますが。)

関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器





フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 乱数 モンテカルロ解析 確率論 ランダムウォーク ブラウン運動 

Scilabでブラウン運動 その1

Scilabで楽しむ確率論(PDF)では一次元と二次元のランダムウォークをシミュレーションするScilabスクリプトが紹介されています。これらのスクリプトを参考にして三次元の対称ランダムウォークのシミュレーションを行いました。

003_20141109070543e4d.png
Fig.1: 三次元の対称ランダムウォーク



一次元対称ランダムウォーク


一次元の場合、t=0でx=0にあった粒子が1ステップの時間の間に、x軸の方向に半々の確率で+1または-1だけ移動するとします。この場合、Nステップ後に粒子がどこにいるのかをシミュレーションしました。

001_20141109070543015.png
Fig.2: 一次元の対称ランダムウォーク


以下はScilabで楽しむ確率論(PDF)による一次元対称ランダムウォークのスクリプト(に多少の編集とコメントを加えたもの)です。

clear;

// *** 時間ステップ数 ***
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
xi = 2 * (rand(tnum,1) >= 0.5) - 1;
S = [0;cumsum(xi)];

// *** グラフのプロット ***
plot(t,S,'-b');
xlabel("Time");
ylabel("Position");


二次元対称ランダムウォーク


二次元の場合t=0で(x,y)=(0,0)にあった粒子が1ステップの間に、x軸の方向には1/2の確率で+1, もう1/2の確率で-1移動し、同様にy軸の方向に対しても半々の確率で正の方向と負の方向にそれぞれ1ずつ移動するとします。この場合、Nステップ後に粒子がどこにいるのかをシミュレーションしました。

002_20141109070543ce1.png
Fig.3: 二次元の対称ランダムウォーク


以下はScilabで楽しむ確率論(PDF)による一次元対称ランダムウォークのスクリプト(に多少の編集とコメントを加えたもの)です。

clear;

// *** 時間 ***
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
xi = 2 * (rand(2,tnum) >= 0.5) - 1;
S = [zeros(2,1), cumsum(xi,'c')];

// *** グラフのプロット ***
plot(S(1,:),S(2,:),'-b');
xlabel("x position");
ylabel("y position");


三次元対称ランダムウォーク


一次元から二次元への拡張を見れば、三次元への拡張もほぼ自明です。
なお、三次元空間における軌跡の表示にはparam3dを利用します。

clear;

// *** 時間 ***
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
xi = 2 * (rand(3,tnum) >= 0.5) - 1;
S = [zeros(3,1), cumsum(xi,'c')];

// *** グラフのプロット ***
param3d(S(1,:),S(2,:),S(3,:));
xlabel("x position");
ylabel("y position");
zlabel("z position");


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: Scilab 乱数 モンテカルロ解析 確率論 ランダムウォーク ブラウン運動 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ