VESTAでAkaiKKRのための基本並進ベクトル

個人的にはAkaiKKRで複雑な結晶構造を持った結晶の第一原理計算を行う事はあまりないのですが、複雑な結晶構造の入力ファイルを簡単に作成できれば便利だとは思います。
今回は、結晶構造を指定するのに非常に良く使われるcifファイルからVESTAを利用して出力することの出来るVASP用の入力ファイルを流用することを考えます。


AkaiKKRのための基本並進ベクトル


結晶構造は、格子(lattice)と基本構造(basis)の組み合わせによって表現されます(参考:結晶学 Crystruct.info)。
AkaiKKR(machikaneyama)でも格子と基本構造の組み合わせによって結晶構造を指定します。格子を指定する方法は、ブラべ格子の種類をキーワードで指定する方法(AkaiKKRのブラベ格子)と基本並進ベクトルで指定する方法(AkaiKKRの基本並進ベクトル その1その2)があります。

いずれにせよ、結晶構造を指定するのために必要十分な情報があれば、それを格子と基本構造へと変換するのは簡単なはずです。
今回は、結晶構造を指定するのに非常に良く使われるcifファイルからVESTAを利用して出力することの出来るVASP用の入力ファイルを流用することを考えます。

六方最密充填構造コバルト(hcp-Co)の基本並進ベクトルと基本構造


まず目標の結晶のcifファイルを入手します。
入手先の候補はいろいろ考えられますが、今回は六方最密充填構造のコバルトのcifファイルGitHubの該当ページからダウンロードします。

次に、結晶構造描画ソフトであるVESTAでcifファイルを開きます。
VESTAでLaMnO3ペロフスカイトなどで結晶構造の描画の方法について説明していますが、今回は結晶構造を眺めるのが目的ではないので、次に進みます。

cifファイルを開いた状態で[File]→[Export Data...]と選択するとファイル保存のダイアログが立ち上がります。
ここでファイルの種類としてVASP (POSCAR;*.vasp)を選択し、保存をクリックします。
するとOptionウインドウが立ち上がり、座標系の選び方を聞いてくるので、今回はFractional coordinatesを選択します。(もちろんCartesian coordinatesを選べば直交座標系になります。なおNiggli reduced cellはよくわからないので今回はパスします。)

保存されたファイルをテキストエディタで開くと、以下のようになっているはずです。
見ての通り、前半が基本並進ベクトルで、後半が基本構造です。

Co
1.0
2.5071001053 0.0000000000 0.0000000000
-1.2535500526 2.1712123810 0.0000000000
0.0000000000 0.0000000000 4.0686001778
Co
2
Direct
0.333333343 0.666666687 0.250000000
0.666666627 0.333333313 0.750000000


ただし、基本並進ベクトルの単位はオングストロームとなっているので、基本並進ベクトルaの大きさで規格化したのち、基本並進ベクトルaの大きさ自体も原子単位系のBohrへと換算します。(c.f. 1 Bohr = 0.52917721092 Å)

c----------------------Co------------------------------------
go data/coAUX
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
aux
1.00000 0.00000 0.00000
-0.50000 0.86603 0.00000
0.00000 0.00000 1.62283
4.738
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0.333333343a 0.666666687b 0.250000000c Co
0.666666627a 0.333333313b 0.750000000c Co
c------------------------------------------------------------


その結果得られた入力ファイルが上記になります。
基本構造の下位の桁が少し怪しいことになっていますが、その点に目をつぶれば、正しく結晶構造を指定できています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama VESTA ブラべ格子 基本並進ベクトル 六方最密充填構造 コバルト 

AkaiKKRの基本並進ベクトル その2

AkaiKKRの基本並進ベクトル その1の続きとして、六方最密充填構造(hcp)のコバルトの入力ファイルを基本並進ベクトルを用いて作成しました。基本並進ベクトルの指定の仕方は直交座標系で任意の回転をさせても変わらないので、色々な取り方があります。
今回は前回と比較してxy平面上で反時計回りに30°回転させた場合のファイルを作成してみました。


基本並進ベクトルと任意の回転


AkaiKKRの基本並進ベクトル その1ではAkaiKKR(machikaneyama)の入力ファイルで基本並進ベクトル利用して結晶構造を入力する方法を書きました。

この際、六方最密充填構造を例にとって、以下のような配置のコバルトの入力ファイルを作成しました。

001_20150513120148d3b.png


c----------------------Co------------------------------------
go data/coAUX
c------------------------------------------------------------
c brvtyp
aux
0.50000 -0.86603 0.00000
0.50000 0.86603 0.00000
0.00000 0.00000 1.62150
4.74
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


上記の例ではaベクトルとbベクトルの間にx軸が来るように基本並進ベクトルを選んでいますが、当然ながらほかの取り方もできます。例えばbベクトルがy軸方向に来るようにとると基本並進ベクトルは以下のようになります。

√3/2 -1/2 0
0 1 0
0 0 c/a

これに対応する入力ファイルは以下のようになります。

c----------------------Co------------------------------------
go data/coAUX
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
aux
0.86603 -0.50000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.62150
4.74
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


上記2つの入力ファイルは、同じ結果が得られるはずです。

計算結果への影響


上記2つの入力ファイルは同じ結果が得られるはずですが、普通にブラべ格子をキーワードとしてhcpを与えたときと、上記のようにauxで基本並進ベクトルを指定した場合とでは、計算結果が異なる場合があります。

実際、下記はAkaiKKRのサンプル入力ファイルとしてinディレクトリに保存されているものですが、AkaiKKRのバージョンによっては下記は上手く収束しない場合があるのに反して、上記のauxで入力したファイルは上手く収束します。

c----------------------Co------------------------------------
go data/co
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 4.74 , 1.6215 , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


ブラべ格子で指定する場合と基本並進ベクトルで指定する場合の違いというよりは、高い対称性を持ったブラべ格子で収束しづらい場合、対称性をおおとしたブラべ格子で計算を行うと収束しやすくなることがある気がします。対称性の高いブラべ格子を指定した場合の方が、内部的にポテンシャルの形状などに強い制約を与えているのかもしれません。気のせいかもしれませんが。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 基本並進ベクトル ブラべ格子 六方最密充填構造 コバルト 

AkaiKKRの基本並進ベクトル その1

AkaiKKRのブラべ格子ではブラべ格子とそれに対応するキーワードをまとめました。今回はその中でauxというキーワードを指定することにより、基本並進ベクトルを用いて入力ファイルを作成する方法を書きました。


格子ベクトルによる結晶構造の指定


AkaiKKR(machikaneyama)の入力ファイルでは、ブラべ格子の各格子点に基本構造(basis)を置くことで結晶構造を指定します。
AkaiKKRのブラべ格子ではブラべ格子とそれに対応するキーワードをまとめました。

しかしながら、ブラべ格子を選ぶ方法以外にも、基本並進ベクトルを直接指定することもできます。この場合、キーワードauxを用いて、以下のようなフォーマットになります。

ax/a ay/a az/a
bx/a by/a bz/a
cx/a cy/a cz/a
a

ここで axaベクトルを直交座標系の成分表示で表したときにx成分という意味です。aはaベクトルの長さ(要するに格子定数a)で単位はBohrなので ax/a というのは格子定数aで規格化したaベクトルのx成分ということです。

六方最密充填構造の基本並進ベクトル


具体例としてinフォルダにサンプルとして存在するhcp構造のコバルトを基本並進ベクトルで与えてみます。以下に示すのは、ブラべ格子で指定したhcpコバルトです。

c----------------------Co------------------------------------
go data/co
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 4.74 , 1.6215 , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習の19ページにある通り、AkaiKKRにおけるベクトルa, b, cと直交座標系の関係は、以下の図のようになります。

001_20150513120148d3b.png


したがって入力する基本並進ベクトルは以下のようになります。

1/2 -√3/2 0
1/2 √3/2 0
0 0 c/a

a = 4.74 (Bohr), c/a = 1.6215とした場合の入力ファイルは、以下のようになります。

c----------------------Co------------------------------------
go data/coAUX
c------------------------------------------------------------
c brvtyp
aux
0.50000 -0.86603 0.00000
0.50000 0.86603 0.00000
0.00000 0.00000 1.62150
4.74
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


出力ファイルの基本並進ベクトル


入力をブラべ格子で与えた場合でも、基本並進ベクトルで与えた場合でも、出力に基本並進ベクトルが書きだされます。以下に示すのが、上記の六方最密充填構造のコバルトの入力ファイルから得られた基本並進ベクトルです。

   primitive translation vectors
a=( 0.50000 -0.86603 0.00000)
b=( 0.50000 0.86603 0.00000)
c=( 0.00000 0.00000 1.62150)


関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 基本並進ベクトル ブラべ格子 

AkaiKKRのブラベ格子

結晶学において、三次元のブラべ格子は14種類存在します。
AkaiKKR(machikaneyama)でも結晶構造の指定にこのブラべ格子を利用し、入力ファイルでは各ブラべ格子に対応したキワードを用います。


プログラム内部では各キーワードに対応した番号が振られているようです。source/ibrava.fのコメントには、以下のように書かれています。

c-----------------------------------------------------------------------
c This program returns the index of the bravais lattice.
c (1)fcc (2)bcc (3)hcp(hex) (4)sc (5)bct (fct) (6)simple tetragonal
c (7)face centered orthorhombic (8)body centered orthorhombic
c (9)base centered orthorhonbic (10)simple orthorhombic
c (11)base centered monoclinic (12)simple monoclinic
c (13)triclinic (14)rhombohedral (trigonal) (15)fct (bct)
c (16)aux (primitive unit vector are to be read in)
c for a practical reason, fct and bct are treated differently.
c coded by H.Akai, April, 1992, Osaka
c revised 26 Dec. 1994, Osaka
c-----------------------------------------------------------------------


キーワード番号ブラべ格子Bravais lattice軸長軸間角度
fcc1面心立方face centered cubica=b=cα=β=γ=90°
bcc2体心立方body centered cubica=b=cα=β=γ=90°
hcp3六方最密hexagonal closed packeda=b≠cα=β=90°, γ=120°
sc4単純立方simple cubica=b=cα=β=γ=90°
bct5体心正方body centered tetragonala=b≠cα=β=γ=90°
st6単純正方simple tetragonala=b≠cα=β=γ=90°
fco7面心斜方face centered orthorhombica≠b≠cα=β=γ=90°
bco8体心斜方body centered orthorhombica≠b≠cα=β=γ=90°
bso9底心斜方base centered orthorhombica≠b≠cα=β=γ=90°
so10単純斜方simple orthorhombica≠b≠cα=β=γ=90°
bsm11底心単斜base centered monoclinica≠b≠cα=γ=90°≠β
sm12単純単斜simple monoclinica≠b≠cα=γ=90°≠β
trc13三斜triclinica≠b≠cα≠β≠γ≠90°
rhb14菱面体rhombohedrala=b=cα=β=γ≠90°
fct15面心正方face centered tetragonala=b≠cα=β=γ=90°
trg14三方trigonala=b=cα=β=γ≠90°
hex3六方hexagonala=b≠cα=β=90°, γ=120°
aux16


ブラべ格子は14種類しか存在しないはずなのに、キーワードは18種類存在します。
このことに関して順に見ていきます。

純金属の結晶構造はほとんどが面心立方構造(fcc)、体心立方構造(bcc)、六方最密充填構造(hcp)なので最初の3つは、これらの結晶構造を作るのに便利なブラべ格子が並んでいます。
ここで注意が必要なのは、本来、六方晶系には六方最密というブラべ格子は存在しないという事です。したがってAkaiKKRにおけるhcpというキーワードは、実は六方最密では無く、単純六方です。実際表の最後から2番目に単純六方を示すhexというキーワードが存在し、その番号はhcpと同じ3です。
ただ、やはりhcpやhexという単純六方のブラべ格子を表すキーワードは、六方最密充填構造という結晶構造を意識したもののようで、入力ファイルにおいて軸比c/aを省略すると、六方最密充填構造における理想値であるc/a=2*√2/√3=1.633が指定されるようです。

更に単純立方(simple cubic)、正方晶系(tetragonal)、斜方晶系(orthorhombic)、単斜晶系(monoclinic)、三斜(triclinic)と続きます。14番の菱面体構造(rhombohedral)は三方晶(trigonal)と同じです。ここまでが14種類の独立なブラべ格子です。面心正方(face centered tetragonal)は体心正方(body centered tetragonal)と等価なブラべ格子ですが、AkaiKKRでは別物として分けてあるようです。

最後に、ブラべ格子ではなく基本ベクトルで結晶構造を指定するためにauxというキーワードが用意されています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama ブラべ格子 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ