スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

AkaiKKRで銅と銅亜鉛合金のフェルミ面

AkaiKKR(Machikaneyama)を用いると状態密度やバンド構造が簡単に描画できます。いくつかの第一原理計算パッケージには、これらに加えてフェルミ面の描画機能があります。しかしながら、AkaiKKRにはおそらくその機能はありません。そこで力任せにBlochスペクトル関数を計算してCuとCu70Zn30のフェルミ面の断面図を作成しました。

その結果は金属電子論〈上〉で紹介されている実験結果をよく再現しました。


金属のフェルミ面


金属の電子構造の個性を表現するために「状態密度(DOS)」や「エネルギー分散(バンド構造)」などがよく図としてプロットされます。「エネルギー分散」は電子の持っている波数とエネルギーの関係をプロットしたもので「状態密度」はエネルギーとそのエネルギーを持つ電子の個数をプロットしたものです。これらは共に、電子の状態をエネルギーの関数として表現しています。

しかしながら、実際の金属の物性は、その多くがフェルミエネルギーの電子の性質だけで決まります。そこで、フェルミ準位だけに限って波数ベクトルを表示した「フェルミ面」も金属の電子状態を表現するために利用されます。

純金属のフェルミ面は、非常によく研究されており、その一覧はウエブ上のデータベースでも見ることができます。(参考: Fermi Surface ExplorerThe Fermi Surface Database)

Cu.jpg
Fig.1: 銅のフェルミ面


Fig.1に示したのはThe Fermi Surface Databaseから引用した銅のフェルミ面です。銅のフェルミ面は、ほとんど自由電子的な球に近い形状をしています。しかしながらブルリアンゾーンのL点の周囲でフェルミ面がブリルアンゾーンに接触しています。

AkaiKKRでフェルミ面の描画


AkaiKKR(Machikaneyama)には標準ではフェルミ面を描画する機能は、ありません(多分)。そもそも不規則合金では、純金属と異なり、フェルミ面という概念自体が必ずしも妥当なものではなくなります。これは電子のエネルギー分散(バンド構造)を考えた際に不規則合金では、各バンドがにじんでしまったことと同じです。(参考: 密度汎関数法の発展 -マテリアルデザインへの応用)

バンド分散に関しては、Blochスペクトル関数を各k点に対して計算したものをプロットすることで表現できました。
同様にして、力まかせに片っ端からBlochスペクトル関数を計算し、フェルミエネルギー(近く)のものだけプロットするという方法でフェルミ面の断面の描画を行う事を考えます。

今回は純金属であるCuと、不規則合金でありながら比較的きれいにフェルミ面の残るCu70Zn30合金のフェルミ面の断面を描いてみることにします。これらの金属のフェルミ面の断面に関する実験的結果は金属電子論〈上〉に紹介されています。

シェルスクリプト


詳しい説明は、別のエントリにで行いたいと思いますが、おおよそ次のような事を行うシェルスクリプトを作成します。

  1. 波数空間上のベクトルPA, PBを2辺とする平行四辺形を考える
  2. 2つのベクトルをそれぞれn分割、m分割した空間メッシュを作成する
  3. spc計算用の入力ファイルのテンプレートから上記のk点を加えた入力ファイルを作成しspecxを起動
  4. 計算結果のspcファイル群からGNUPLOTに適したdatファイルの作成


結果


CuのXΓX断面とKΓX断面を計算したものがFig.2-3です。

XGXCu.png
Fig.2: Cuのフェルミ面のXΓX断面

XGKCu.png
Fig.3: Cuのフェルミ面のKΓX断面


XΓX断面におけるフェルミ面は、自由電子的な真円に近い形状をしています。黒のラインで示したのが第一ブリルアンゾーンの境界で、図中に書き込んではありませんが、斜めになっている角がW点、斜面の真ん中がL点です。

KΓX断面におけるフェルミ面は、前述したとおり円形からひずみ、第一ブルリアンゾーンの境界に触れています。触れている中心がL点で斜めの部分の上の角がU点です。

同様にCu70Zn30の断面図をプロットしたのがFig.4-5です。

XGXCuZn.png
Fig.4: Cu70Zn30のフェルミ面のXΓX断面

XGKCuZn.png
Fig.5: Cu70Zn30のフェルミ面のKΓX断面


金属電子論〈上〉で解説されている通り、Znの合金化によって1原子あたりの平均価電子数e/aが増加します。この結果として、フェルミ面が大きくなっていることがわかります。このことはXΓX断面では円の半径が大きくなっていること、KΓX断面では第一ブリルアンゾーンに触れている領域が広がっていることとして表れています。

関連エントリ






参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。
スポンサーサイト

tag: AkaiKKR machikaneyama KKR CPA フェルミ面 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。