AkaiKKRでハーフメタル

第27回のCMDワークショップAkaiKKR(machikaneyama)の実習で習ったハーフメタルの計算を復習するために、シェルスクリプトを作成して、片っ端から計算しました。

CrAs587.png

Fig.1: 閃亜鉛鉱(zinc blende)構造のCrAsの格子定数を a = 5.87 Å としたときの状態密度。このようにアップスピン側が金属的なバンド構造で、ダウンスピン側が半導体的なバンド構造を持つ物質をハーフメタルと呼ぶ。



ハーフメタル


第27回のCMDワークショップAkaiKKR(machikaneyama)の実習で、ハーフメタルの計算を習いました。
ハーフメタルとはFig.1に示すような、アップスピン側のバンドが金属的、ダウンスピン側のバンドが半導体的なバンド構造を持つ物質の事を指します。紛らわしいですがecaljで半金属α-スズで計算した半金属(セミメタル)とは別の概念です。

ハーフメタルは強磁性体となり、そのスピン磁気モーメントは必ずボーア磁子の整数倍になります。これは以下のような理由からです。
まず、ダウンスピンは、価電子帯のすべてのバンドが埋まっているので、電子数は整数値になります。そして、全電子数からダウンスピンの電子数を引いた残りも当然ながら整数になります。従って、アップスピンとダウンスピンの電子数の差であるスピン磁気モーメントも必ず整数になるわけです。

今回計算する半金属の候補は以下の6つの化学組成のものです。
  • CrP
  • CrAs
  • CrSb
  • MnP
  • MnAs
  • MnSb

これらの標準状態の結晶構造は、必ずしも閃亜鉛鉱(zinc blende)構造ではないのだと思いますが、閃亜鉛鉱構造をもつ色々な物質を基板として、その上に結晶を成長させることにより、閃亜鉛鉱構造をもち、かつ、さまざまな格子定数となる半金属を実際に作成することができるとの事です。

今回計算する格子定数は 4.98, 5.45, 5.65, 5.87, 6.06, 6.10, 6.48 Å の7種類です。

化学組成と格子定数の組み合わせによって、半金属になる場合とならない場合があります。
第27回のCMDワークショップでは、受講者が分担して各組成の計算を行いましたが、今回はすべての組成と格子定数を一気に計算するシェルスクリプトを作成しました。

計算手法


いつもどおり、入力ファイルのテンプレートをあらかじめ用意しておき、一部のパラメータを sed で置き換えて入力ファイルを作成するという手順を踏みます。
以下にgo計算のための入力ファイルのテンプレートとそれを置換するためのCシェルのシェルスクリプトを示します。

c----------------------MnSb----------------------------------
go data/AATOMBATOMALATT
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc ABOHR , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.03
c------------------------------------------------------------
c ntyp
4
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
AATOM 1 1 0.0 2 AANUM 100
BATOM 1 1 0.0 2 BANUM 100
Vc1 1 1 0.0 0 0 100
Vc2 1 1 0.0 0 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 AATOM
0.25 0.25 0.25 BATOM
0.5 0.5 0.5 Vc1
0.75 0.75 0.75 Vc2
c------------------------------------------------------------


#!/bin/csh -f

## *** プロジェクト名 ***
set PROJECT="HalfMetal"
## ポテンシャルファイル名
set POTENTIAL=${PROJECT}

## *** 格子定数のリスト (Angstrom) ***
set ALATT_LIST=( 4.98 5.45 5.65 5.87 6.06 6.10 6.48 )
set AATOM_LIST=( Cr Mn )
set AANUM_LIST=( 24 25 )
set BATOM_LIST=( P As Sb )
set BANUM_LIST=( 15 33 51 )

## *** 第一原理計算 ****
set i=0
foreach AATOM ( ${AATOM_LIST} )
set i=`echo "${i}+1" | bc -l`
set AANUM=${AANUM_LIST[$i]}
set j=0
foreach BATOM ( ${BATOM_LIST} )
set j=`echo "${j}+1" | bc -l`
set BANUM=${BANUM_LIST[$j]}
foreach ALATT ( ${ALATT_LIST} )
set ABOHR=`echo "scale=5; ${ALATT}/0.52917721092" | bc -l`
## 強磁性用入力ファイルの作成
sed 's/'ABOHR'/'${ABOHR}'/g' template/${PROJECT}.in | sed 's/'ALATT'/'${ALATT}'/g' | sed 's/'AATOM'/'${AATOM}'/g' | sed 's/'AANUM'/'${AANUM}'/g' | sed 's/'BATOM'/'${BATOM}'/g' | sed 's/'BANUM'/'${BANUM}'/g' > in/${AATOM}${BATOM}${ALATT}.in
## LMD用入力ファイルの作成
sed 's/'ABOHR'/'${ABOHR}'/g' template/${PROJECT}-lmd.in | sed 's/'ALATT'/'${ALATT}'/g' | sed 's/'AATOM'/'${AATOM}'/g' | sed 's/'AANUM'/'${AANUM}'/g' | sed 's/'BATOM'/'${BATOM}'/g' | sed 's/'BANUM'/'${BANUM}'/g' > in/${AATOM}${BATOM}${ALATT}-lmd.in
## 強磁性状態の計算
specx out/${AATOM}${BATOM}${ALATT}.out
## LMD初期ポテンシャルの作成
cp data/${AATOM}${BATOM}${ALATT} data/HalfMetal
fmg < HalfMetal.fmg
cp data/HalfMetal_lmd data/${AATOM}${BATOM}lmd${ALATT}
## LMD状態の計算
specx out/${AATOM}${BATOM}${ALATT}-lmd.out
end
end
end


5.87ÅのCrAsの計算結果


すべてのデータを眺めながら系統的な議論を行うのが本筋なのですが、今回は格子定数 a=5.87 Å のCrAsについてのみ結果を見てみます。
Fig.1は計算された状態密度で確かに半金属になっています。磁気モーメントの計算値は 2.99028 μB で、これもほとんど整数値の3とみなすことができます。

次にキュリー温度を求めます。強磁性状態と局所モーメント不規則状態の全エネルギーはそれぞれ
EFMG=-6613.3040012 (Ry)
ELMD=-6613.2841922 (Ry)
となりました。

ボルツマン定数は kB = 6.3336*10-6 (Ry/K) なので
\begin{equation}
T_C = \frac{2}{3}\frac{E_{FMG}-E_{LMD}}{k_B}=2085 (\mathrm{K})
\end{equation}
となり、キュリー温度は非常に高いことが予想されました。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR ハーフメタル 強磁性 キュリー温度 状態密度 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ