スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

AkaiKKRでハーフメタル

第27回のCMDワークショップAkaiKKR(machikaneyama)の実習で習ったハーフメタルの計算を復習するために、シェルスクリプトを作成して、片っ端から計算しました。

CrAs587.png

Fig.1: 閃亜鉛鉱(zinc blende)構造のCrAsの格子定数を a = 5.87 Å としたときの状態密度。このようにアップスピン側が金属的なバンド構造で、ダウンスピン側が半導体的なバンド構造を持つ物質をハーフメタルと呼ぶ。



ハーフメタル


第27回のCMDワークショップAkaiKKR(machikaneyama)の実習で、ハーフメタルの計算を習いました。
ハーフメタルとはFig.1に示すような、アップスピン側のバンドが金属的、ダウンスピン側のバンドが半導体的なバンド構造を持つ物質の事を指します。紛らわしいですがecaljで半金属α-スズで計算した半金属(セミメタル)とは別の概念です。

ハーフメタルは強磁性体となり、そのスピン磁気モーメントは必ずボーア磁子の整数倍になります。これは以下のような理由からです。
まず、ダウンスピンは、価電子帯のすべてのバンドが埋まっているので、電子数は整数値になります。そして、全電子数からダウンスピンの電子数を引いた残りも当然ながら整数になります。従って、アップスピンとダウンスピンの電子数の差であるスピン磁気モーメントも必ず整数になるわけです。

今回計算する半金属の候補は以下の6つの化学組成のものです。
  • CrP
  • CrAs
  • CrSb
  • MnP
  • MnAs
  • MnSb

これらの標準状態の結晶構造は、必ずしも閃亜鉛鉱(zinc blende)構造ではないのだと思いますが、閃亜鉛鉱構造をもつ色々な物質を基板として、その上に結晶を成長させることにより、閃亜鉛鉱構造をもち、かつ、さまざまな格子定数となる半金属を実際に作成することができるとの事です。

今回計算する格子定数は 4.98, 5.45, 5.65, 5.87, 6.06, 6.10, 6.48 Å の7種類です。

化学組成と格子定数の組み合わせによって、半金属になる場合とならない場合があります。
第27回のCMDワークショップでは、受講者が分担して各組成の計算を行いましたが、今回はすべての組成と格子定数を一気に計算するシェルスクリプトを作成しました。

計算手法


いつもどおり、入力ファイルのテンプレートをあらかじめ用意しておき、一部のパラメータを sed で置き換えて入力ファイルを作成するという手順を踏みます。
以下にgo計算のための入力ファイルのテンプレートとそれを置換するためのCシェルのシェルスクリプトを示します。

c----------------------MnSb----------------------------------
go data/AATOMBATOMALATT
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc ABOHR , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.03
c------------------------------------------------------------
c ntyp
4
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
AATOM 1 1 0.0 2 AANUM 100
BATOM 1 1 0.0 2 BANUM 100
Vc1 1 1 0.0 0 0 100
Vc2 1 1 0.0 0 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 AATOM
0.25 0.25 0.25 BATOM
0.5 0.5 0.5 Vc1
0.75 0.75 0.75 Vc2
c------------------------------------------------------------


#!/bin/csh -f

## *** プロジェクト名 ***
set PROJECT="HalfMetal"
## ポテンシャルファイル名
set POTENTIAL=${PROJECT}

## *** 格子定数のリスト (Angstrom) ***
set ALATT_LIST=( 4.98 5.45 5.65 5.87 6.06 6.10 6.48 )
set AATOM_LIST=( Cr Mn )
set AANUM_LIST=( 24 25 )
set BATOM_LIST=( P As Sb )
set BANUM_LIST=( 15 33 51 )

## *** 第一原理計算 ****
set i=0
foreach AATOM ( ${AATOM_LIST} )
set i=`echo "${i}+1" | bc -l`
set AANUM=${AANUM_LIST[$i]}
set j=0
foreach BATOM ( ${BATOM_LIST} )
set j=`echo "${j}+1" | bc -l`
set BANUM=${BANUM_LIST[$j]}
foreach ALATT ( ${ALATT_LIST} )
set ABOHR=`echo "scale=5; ${ALATT}/0.52917721092" | bc -l`
## 強磁性用入力ファイルの作成
sed 's/'ABOHR'/'${ABOHR}'/g' template/${PROJECT}.in | sed 's/'ALATT'/'${ALATT}'/g' | sed 's/'AATOM'/'${AATOM}'/g' | sed 's/'AANUM'/'${AANUM}'/g' | sed 's/'BATOM'/'${BATOM}'/g' | sed 's/'BANUM'/'${BANUM}'/g' > in/${AATOM}${BATOM}${ALATT}.in
## LMD用入力ファイルの作成
sed 's/'ABOHR'/'${ABOHR}'/g' template/${PROJECT}-lmd.in | sed 's/'ALATT'/'${ALATT}'/g' | sed 's/'AATOM'/'${AATOM}'/g' | sed 's/'AANUM'/'${AANUM}'/g' | sed 's/'BATOM'/'${BATOM}'/g' | sed 's/'BANUM'/'${BANUM}'/g' > in/${AATOM}${BATOM}${ALATT}-lmd.in
## 強磁性状態の計算
specx out/${AATOM}${BATOM}${ALATT}.out
## LMD初期ポテンシャルの作成
cp data/${AATOM}${BATOM}${ALATT} data/HalfMetal
fmg < HalfMetal.fmg
cp data/HalfMetal_lmd data/${AATOM}${BATOM}lmd${ALATT}
## LMD状態の計算
specx out/${AATOM}${BATOM}${ALATT}-lmd.out
end
end
end


5.87ÅのCrAsの計算結果


すべてのデータを眺めながら系統的な議論を行うのが本筋なのですが、今回は格子定数 a=5.87 Å のCrAsについてのみ結果を見てみます。
Fig.1は計算された状態密度で確かに半金属になっています。磁気モーメントの計算値は 2.99028 μB で、これもほとんど整数値の3とみなすことができます。

次にキュリー温度を求めます。強磁性状態と局所モーメント不規則状態の全エネルギーはそれぞれ
EFMG=-6613.3040012 (Ry)
ELMD=-6613.2841922 (Ry)
となりました。

ボルツマン定数は kB = 6.3336*10-6 (Ry/K) なので
\begin{equation}
T_C = \frac{2}{3}\frac{E_{FMG}-E_{LMD}}{k_B}=2085 (\mathrm{K})
\end{equation}
となり、キュリー温度は非常に高いことが予想されました。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。
スポンサーサイト

tag: AkaiKKR machikaneyama KKR ハーフメタル 強磁性 キュリー温度 状態密度 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。